1
|
Alsalmi O, Mashraqi MM, Alshamrani S, Almasoudi HH, Alharthi AA, Gharib AF. Variolin B from sea sponge against lung cancer: a multitargeted molecular docking with fingerprinting and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:3507-3519. [PMID: 37855303 DOI: 10.1080/07391102.2023.2272204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/07/2023] [Indexed: 10/20/2023]
Abstract
Lung Cancer is the one that causes more fatalities in the world compared to other cancers, and its uniqueness is that it can be found in both males and females. However, recent data has shown that males are more affected due to lifestyle habits like smoking, tobacco consumption and inhaling polluted air. The World Health Organization has kept lung cancer on its priority list as it causes 1.8 million deaths worldwide each year, and the predictions show that the cases are going to increase year by year, and by 2050, there can be 3.8 million new cases and 3.2 million deaths, and the global health system is not prepared for it. Also, finding drug candidates that can help shrink cancerous cells and lead to their death is essential to reduce global mortality. The system needs drug compounds that can inhibit multiple paths together not to enter drug resistance quickly and to reduce costs. Our study identified a compound named Variolin B (DB08694) that belongs to the organic compounds class of pyrrolopyridines. The identified compound can inhibit multiple proteins, drastically reducing the global burden. Variolin B was identified as a potential candidate against lung cancer using the multisampling algorithm such as HTVS, SP, and XP, followed by MM\GBSA calculations showing the docking score of -9.245 Kcal/mol to -5.92 Kcal/mol. Also, we have validated it with ADMET predictions and molecular fingerprinting to analyse the interaction patterns. Further, the study was extended to molecular dynamics simulations for 100 ns to understand the complex stability and simulative interactions. The complex's overall molecular dynamics simulation helped us understand that the identified candidate is stable with the lowest deviation and fluctuations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ohud Alsalmi
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Afaf Awwadh Alharthi
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
2
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
3
|
Kawalkar U, Joshi S, Patekar A, Kogade P, Rajurkar S, Telrandhe S. Teacher's Perspectives About Tobacco Consumption and Its Prevention Among Students From Western Maharashtra, India: A Qualitative Study. Cureus 2023; 15:e45924. [PMID: 37885519 PMCID: PMC10599403 DOI: 10.7759/cureus.45924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Background Teachers are role models for students and influential members of society. They are capable of influencing social norms related to tobacco control among students. This background study was planned to understand teachers' opinions and views about factors influencing tobacco use and prevention strategies being used. Methodology We conducted qualitative research on teacher's opinions about tobacco use among students. We chose focus group discussion as our data collection method, as we wanted to observe their personal views on social norms. We involved 70 high school teachers in our study from the Akola district. The data collected from the teachers were organized into various themes interrelated to the objectives. Results The majority of teachers mentioned that the reason for tobacco consumption among children was peer pressure, from observations of older individuals in society, and from TV serials. Some teachers suggested that proper counseling and telling them about the harmful effects of tobacco are useful for prevention. Tobacco's harmful effects and its prevention strategies were not included in the standard curricula of students, which is one of the key barriers. Conclusions There is a need to implement school-based tobacco prevention education programs to reduce the early onset of smoking among students. School authorities must implement the Cigarettes and Other Tobacco Products (Prohibition of Advertisement and Regulation of Trade and Commerce, Production, Supply, and Distribution) Act, 2003 effectively with the help of the police to prohibit tobacco use among teachers and students.
Collapse
Affiliation(s)
- Umesh Kawalkar
- Community Medicine, Government Medical College (GMC) Akola, Akola, IND
| | - Shounak Joshi
- Community Medicine, Government Medical College (GMC) Akola, Akola, IND
| | - Ashwini Patekar
- Community Medicine, Government Medical College (GMC) Akola, Akola, IND
| | - Priti Kogade
- Community Medicine, Government Medical College (GMC) Akola, Akola, IND
| | - Sampda Rajurkar
- Community Medicine, Government Medical College (GMC) Akola, Akola, IND
| | - Shital Telrandhe
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|