1
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2024; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Zhou L, Li R, Wang F, Zhou R, Xia Y, Jiang X, Cheng S, Wang F, Li D, Zhang J, Mao L, Cai X, Zhang H, Qiu J, Tian X, Zou Z, Chen C. N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135736. [PMID: 39265400 DOI: 10.1016/j.jhazmat.2024.135736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Excessive exposure to metals in daily life has been proposed as an environmental risk factor for neurological disorders. Oxidative stress is an inevitable stage involved in the neurotoxic effects induced by metals, nevertheless, the underlying mechanisms are still unclear. In this study, we used arsenic as a representative environmental heavy metal to induce neuronal oxidative stress and demonstrated that both in vitro and in vivo exposure to arsenic significantly increased the level of N6-methyladenosine (m6A) by down-regulating its demethylase FTO. Importantly, the results obtained from FTO transgenic mice and FTO overexpressed/knockout cells indicated that FTO likely regulated neuronal oxidative stress by modulating activating transcription factor 3 (ATF3) in a m6A-dependent manner. We also identified the specific m6A reader protein, YTHDC1, which interacted with ATF3 and thereby affecting its regulatory effects on oxidative stress. To further explore potential intervention strategies, cerebral metabolomics was conducted and we newly identified myo-inositol as a metabolite that exhibited potential in protecting against arsenic-induced oxidative stress and cognitive dysfunction. Overall, these findings provide new insights into the importance of the FTO-ATF3 signaling axis in neuronal oxidative stress from an m6A perspective, and highlight a beneficial metabolite that can counteract the oxidative stress induced by arsenic.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Renjie Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fu Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruiqi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Cai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Dai G, Sun H, Lan Y, Jiang J, Fang B. The association of manganese levels with red cell distribution width: A population-based study. PLoS One 2024; 19:e0292569. [PMID: 39146304 PMCID: PMC11326586 DOI: 10.1371/journal.pone.0292569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/08/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVES Experimental and acute exposure studies imply that manganese affects red blood cell production. Nevertheless, the association between environmental exposure and red blood cell distribution width (RDW) has yet to be explored. This research sought to assess the correlation between blood manganese levels and RDW within the general population of the United States. MATERIALS AND METHODS Employing weighted multiple linear regression models, data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES) were utilized to assess the correlation between manganese levels in the blood and RDW. Restricted cubic spline plots and two-piecewise linear regression models were also employed. RESULT The analysis included a total of 15882 participants in which we determined an independent positive relationship between blood manganese levels and RDW among participants(β = 0.079, P<0.001). Moreover, we identified a J-shaped association between blood manganese levels and RDW in total participants (inflection point for blood manganese: 7.32 ug/L) and distinct subgroups following adjusted covariates. Women exhibited a more pronounced association, even after controlling for adjusted covariates. CONCLUSIONS We determined a J-shaped relationship between blood manganese levels and RDW with an inflection point at 7.32 ug/L for blood manganese. Nevertheless, fundamental research and large sample prospective studies are needed to determine the extent to which blood manganese levels correlate with RDW.
Collapse
Affiliation(s)
- Guanmian Dai
- Department of Hematology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Huanhuan Sun
- Department of Traditional Chinese Medicine, FuYang Women and Children's Hospital, Fuyang, Anhui, China
| | - Yanli Lan
- Department of Oncology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Jinhong Jiang
- Department of Hematology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Bingmu Fang
- Department of Hematology, Lishui People's Hospital, Lishui, Zhejiang, China
| |
Collapse
|
4
|
Yanjun Y, Jing Z, Yifei S, Gangzhao G, Chenxin Y, Qiang W, Qiang Y, Shuwen H. Trace elements in pancreatic cancer. Cancer Med 2024; 13:e7454. [PMID: 39015024 PMCID: PMC11252496 DOI: 10.1002/cam4.7454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PCA) is an extremely aggressive malignant cancer with an increasing incidence and a low five-year survival rate. The main reason for this high mortality is that most patients are diagnosed with PCA at an advanced stage, missing early treatment options and opportunities. As important nutrients of the human body, trace elements play an important role in maintaining normal physiological functions. Moreover, trace elements are closely related to many diseases, including PCA. REVIEW This review systematically summarizes the latest research progress on selenium, copper, arsenic, and manganese in PCA, elucidates their application in PCA, and provides a new reference for the prevention, diagnosis and treatment of PCA. CONCLUSION Trace elements such as selenium, copper, arsenic and manganese are playing an important role in the risk, pathogenesis, diagnosis and treatment of PCA. Meanwhile, they have a certain inhibitory effect on PCA, the mechanism mainly includes: promoting ferroptosis, inducing apoptosis, inhibiting metastasis, and inhibiting excessive proliferation.
Collapse
Affiliation(s)
- Yao Yanjun
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Gu Gangzhao
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Chenxin
- Shulan International Medical schoolZhejiang Shuren UniversityHangzhouChina
| | - Wei Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
- Institut Catholique de Lille, Junia (ICL), Université Catholique de Lille, Laboratoire Interdisciplinaire des Transitions de Lille (LITL)LilleFrance
| |
Collapse
|
5
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|