1
|
Zhang Z, Li Y, Feng H, Li S, Qin Z, Li J, Chen Y, Zhang Y, Zhao Y, Yin X, Huang B, Gao Y, Shi Y, Shi H. Effects of postweaning cadmium exposure on socioemotional behaviors in adolescent male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116089. [PMID: 38354436 DOI: 10.1016/j.ecoenv.2024.116089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Exposure to cadmium (Cd), a toxic heavy metal classified as an environmental endocrine disruptor, can exert significant toxicity in both animals and humans. However, the potential effects of Cd exposure on socioemotional behaviors are still poorly understood, as are the underlying mechanisms. In the present study, employing a series of behavioral tests as well as 16 S rRNA sequencing analysis, we investigated the long-term effects of Cd exposure on socioemotional behaviors and their associated mechanisms in mice based on the brain-gut interaction theory. The results showed that postweaning exposure to Cd reduced the ability to resist depression, decreased social interaction, subtly altered sexual preference, and changed the composition of the gut microbiota in male mice during adolescence. These findings provided direct evidence for the deleterious effects of exposure to Cd in the postweaning period on socioemotional behaviors later in adolescence, and suggested that these effects of Cd exposure may be linked to changes in the gut microbiota.
Collapse
Affiliation(s)
- Zhengxin Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Shijun Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabo Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, China.
| |
Collapse
|
2
|
Gul A, Gul DES, Mohiuddin S. Metals as toxicants in event-based expedited production of children's jewelry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27620-y. [PMID: 37202632 DOI: 10.1007/s11356-023-27620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Globally, the hazardous substance in children's goods is of great concern. Toxic chemicals are potentially harmful to the health and growth of infants and children. Lead (Pb) and cadmium (Cd)-contaminated children's jewelry is widely encountered in many countries. This study aims to determine the concentration of metal toxicants (Pb, Cd, Ni, Cu, Zn, Co, and Fe) in event-based (Independence Day festival) children's jewelry, considering time-limited and fast production products that may compromise the quality and safety parameters during manufacturing. The determinations are for the time-constraint industrial production of children's jewelry in the context of the toxic substances in a variety of base materials used. This is the first time event-based children's jewelry has been monitored and critically assessed for metal contamination. Forty-two samples, including metallic, wooden, textile, rubber, plastic, and paint-coated plastic children's jewelry, were tested. Seventy-four percent of samples detected Pb and Cd in quantifiable amounts. Ni in 71%, Cu in 67%, Co in 43%, and Zn and Fe were detected in 100% samples with quantifiable amounts. Twenty-two ID-CJ samples exceeded the US regulatory limit for Pb and four samples for Cd. However, twenty-nine samples for Pb, eleven for Cd, five for Co, and one for Cu exceeded the EU regulatory limit. The highest concentration of Pb was found in paint-coated plastic jewelry, and the highest Cd was found in metallic jewelry. These results suggest that the potential hazards of event-based children's jewelry deserve the attention of government agencies seeking to limit children's exposure to toxic chemicals. Intergovernmental organizations and individual countries regulate chemicals in consumer products, but a coordinated international approach is lacking. Some continents and countries still lack in regulations for children's products, especially jewelry, and toys.
Collapse
Affiliation(s)
- Anam Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| | - Dur-E-Shahwar Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan.
| | - Shaikh Mohiuddin
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|