1
|
Qiang Y, Huang W, Liang W, Liu R, Han X, Pan Y, Wang N, Yu Y, Zhang Z, Sun L, Qiu W. An adaptive spatiotemporal filter for ultrasound localization microscopy based on density canopy clustering. ULTRASONICS 2024; 144:107446. [PMID: 39213718 DOI: 10.1016/j.ultras.2024.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ultrasound Localization Microscopy (ULM) facilitates structural and hemodynamic imaging of microvessels with a resolution of tens of micrometers. In ULM, the extraction of effective microbubble signals is crucial for image quality. Singular Value Decomposition (SVD) is currently the most prevalent method for microbubble signal extraction in ULM. Most existing ULM studies employ a fixed SVD filter threshold using empirical values which will lead to imaging quality degradation due to the insufficient separation of blood signals. In this study, we propose an adaptive and non-threshold SVD filter based on canopy-density clustering, termed DCC-SVD. This filter automatically classifies the components of the SVD based on the density of their spatiotemporal features, eliminating the need for parameter selection. In in vitro tube phantom, DCC-SVD demonstrated its ability to adaptive separation of blood and bubble signal at varying microbubble concentrations and flow rates. We compared the proposed DCC-SVD method with the Block-match 3D (BM3D) filter and a classical adaptive method called spatial similarity matrix (SSM), using concentration-variable in vivo rat brain data, as well as open-source rat kidney and mouse tumor datasets. The proposed DCC-SVD improved the global spatial resolution by approximately 4 μm from 30.39 μm to 26.02 μm. It also captured vessel structure absent in images obtained by other methods and yielded a smoother vessel intensity profile, making it a promising spatiotemporal filter for ULM imaging.
Collapse
Affiliation(s)
- Yu Qiang
- The Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenyue Huang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Liang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rong Liu
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuan Han
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Pan
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningyuan Wang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Yu
- Department of Biomedical Engineering, Shenzhen University, Shenzhen, China.
| | - Zhiqiang Zhang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
| | - Lei Sun
- The Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Weibao Qiu
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Kolinko Y, Kralickova M, Cendelin J. Reduction of Microvessel Number and Length in the Cerebellum of Purkinje Cell Degeneration Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:471-478. [PMID: 37071329 DOI: 10.1007/s12311-023-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Degenerative effects of nerve tissues are often accompanied by changes in vascularization. In this regard, knowledge about hereditary cerebellar degeneration is limited. In this study, we compared the vascularity of the individual cerebellar components of 3-month-old wild-type mice (n = 8) and Purkinje cell degeneration (pcd) mutant mice, which represent a model of hereditary cerebellar degeneration (n = 8). Systematic random samples of tissue sections were processed, and laminin was immunostained to visualize microvessels. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in cerebellar layers. Our results in pcd mice revealed a 45% (p < 0.01) reduction in the total volume of the cerebellum, a 28% (p < 0.05) reduction in the total number of vessels and a lower total length, approaching 50% (p < 0.001), compared to the control mice. In pcd mutants, cerebellar degeneration is accompanied by significant reduction in the microvascular network that is proportional to the cerebellar volume reduction therefore does not change density of in the cerebellar gray matter of pcd mice.
Collapse
Affiliation(s)
- Yaroslav Kolinko
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Milena Kralickova
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelin
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
3
|
Vautier A, Lebreton AL, Codron P, Awada Z, Gohier P, Cassereau J. Retinal vessels as a window on amyotrophic lateral sclerosis pathophysiology: A systematic review. Rev Neurol (Paris) 2023; 179:548-562. [PMID: 36842953 DOI: 10.1016/j.neurol.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 02/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare fatal motor neuron disease. Although many potential mechanisms have been proposed, the pathophysiology of the disease remains unknown. Currently available treatments can only delay the progression of the disease and prolong life expectancy by a few months. There is still no definitive cure for ALS, and the development of new treatments is limited by a lack of understanding of the underlying biological processes that trigger and promote neurodegeneration. Several scientific results suggest a neurovascular impairment in ALS providing perspectives for the development of new biomarkers and treatments. In this article, we performed a systematic review using PRISMA guidelines including PubMed, EmBase, GoogleScholar, and Web of Science Core Collection to analyze the scientific literature published between 2000 and 2021 discussing the neurocardiovascular involvement and ophthalmologic abnormalities in ALS. In total, 122 articles were included to establish this systematic review. Indeed, microvascular pathology seems to be involved in ALS, affecting all the neurovascular unit components. Retinal changes have also been recently highlighted without significant alteration of the visual pathways. Despite the peripheral location of the retina, it is considered as an extension of the central nervous system (CNS) as it displays similarities to the brain, the inner blood-retinal barrier, and the blood-brain barrier. This suggests that the eye could be considered as a 'window' into the brain in many CNS disorders. Thus, studying ocular manifestations of brain pathologies seems very promising in understanding neurodegenerative disorders, mainly ALS. Optical coherence tomography angiography (OCT-A) could therefore be a powerful approach for exploration of retinal microvascularization allowing to obtain new diagnostic and prognostic biomarkers of ALS.
Collapse
Affiliation(s)
- A Vautier
- Department of Ophthalmology, University Hospital, Angers, France.
| | - A L Lebreton
- Department of Ophthalmology, University Hospital, Angers, France
| | - P Codron
- Amyotrophic Lateral Sclerosis (ALS) Center, Department of Neurology, University Hospital, Angers, France; Department of Neurobiology and Neuropathology, University Hospital, Angers, France; University of Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Z Awada
- Department of neuroscience, LHH-SIUH, New York, USA
| | - P Gohier
- Department of Ophthalmology, University Hospital, Angers, France
| | - J Cassereau
- Amyotrophic Lateral Sclerosis (ALS) Center, Department of Neurology, University Hospital, Angers, France; University of Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France.
| |
Collapse
|
4
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Drobnjak Nes D, Berg-Hansen P, de Rodez Benavent SA, Høgestøl EA, Beyer MK, Rinker DA, Veiby N, Karabeg M, Petrovski BÉ, Celius EG, Harbo HF, Petrovski G. Exploring Retinal Blood Vessel Diameters as Biomarkers in Multiple Sclerosis. J Clin Med 2022; 11:jcm11113109. [PMID: 35683496 PMCID: PMC9181486 DOI: 10.3390/jcm11113109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
We aimed to determine whether retinal vessel diameters and retinal oxygen saturation in newly diagnosed patients with multiple sclerosis (pwMS) are different from those of a healthy population. Retinal blood vessel diameters were measured using imaging with a spectrophotometric non-invasive retinal oximeter. Twenty-three newly diagnosed untreated relapsing-remitting MS (RRMS) patients (mean age: 32.2 ± 7.5 years, age range = 18-50 years, 56.5% female) were measured and compared to 23 age- and sex-matched healthy controls (HCs) (mean age: 34.8 ± 8.1 years). Patients with Optic Neuritis were excluded. Retinal venular diameter (143.8 µm versus 157.8 µm: mean; p = 0.0013) and retinal arteriolar diameter (112.6 µm versus 120.6 µm: mean; p = 0.0089) were smaller in pwMS when compared with HCs, respectively. There was no significant difference in the oxygen saturation in retinal venules and arterioles in pwMS (mean: 60.0% and 93.7%; p = 0.5980) compared to HCs (mean: 59.3% and 91.5%; p = 0.8934), respectively. There was a significant difference in the median low contrast visual acuity (2.5% contrast) between the pwMS and the HC groups (p = 0.0143) Retinal arteriolar and venular diameter may have potential as objective biomarkers for MS.
Collapse
Affiliation(s)
- Dragana Drobnjak Nes
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
| | - Pål Berg-Hansen
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
| | - Sigrid A. de Rodez Benavent
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
| | - Einar A. Høgestøl
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Mona K. Beyer
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Daniel A. Rinker
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Nina Veiby
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
| | - Mia Karabeg
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Beáta Éva Petrovski
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Elisabeth G. Celius
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Hanne F. Harbo
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Goran Petrovski
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
- Correspondence:
| |
Collapse
|
6
|
Yi HM, Lowerison MR, Song PF, Zhang W. A Review of Clinical Applications for Super-resolution Ultrasound Localization Microscopy. Curr Med Sci 2022; 42:1-16. [PMID: 35167000 DOI: 10.1007/s11596-021-2459-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
Microvascular structure and hemodynamics are important indicators for the diagnosis and assessment of many diseases and pathologies. The structural and functional imaging of tissue microvasculature in vivo is a clinically significant objective for the development of many imaging modalities. Contrast-enhanced ultrasound (CEUS) is a popular clinical tool for characterizing tissue microvasculature, due to the moderate cost, wide accessibility, and absence of ionizing radiation of ultrasound. However, in practice, it remains challenging to demonstrate microvasculature using CEUS, due to the resolution limit of conventional ultrasound imaging. In addition, the quantification of tissue perfusion by CEUS remains hindered by high operator-dependency and poor reproducibility. Inspired by super-resolution optical microscopy, super-resolution ultrasound localization microscopy (ULM) was recently developed. ULM uses the same ultrasound contrast agent (i.e. microbubbles) in CEUS. However, different from CEUS, ULM uses the location of the microbubbles to construct images, instead of using the backscattering intensity of microbubbles. Hence, ULM overcomes the classic compromise between imaging resolution and penetration, allowing for the visualization of capillary-scale microvasculature deep within tissues. To date, many in vivo ULM results have been reported, including both animal (kidney, brain, spinal cord, xenografted tumor, and ear) and human studies (prostate, tibialis anterior muscle, and breast cancer tumors). Furthermore, a variety of useful biomarkers have been derived from using ULM for different preclinical and clinical applications. Due to the high spatial resolution and accurate blood flow speed estimation (approximately 1 mm/s to several cm/s), ULM presents as an enticing alternative to CEUS for characterizing tissue microvasculature in vivo. This review summarizes the principles and present applications of CEUS and ULM, and discusses areas where ULM can potentially provide a better alternative to CEUS in clinical practice and areas where ULM may not be a better alternative. The objective of the study is to provide clinicians with an up-to-date review of ULM technology, and a practical guide for implementing ULM in clinical research and practice.
Collapse
Affiliation(s)
- Hui-Ming Yi
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Peng-Fei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Wei Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA. .,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.
| |
Collapse
|
7
|
Begic E, Causevic M. Glucagon-Like Peptide-1 Receptor Agonists and Brain Vascular Function. Heart Lung Circ 2021; 30:1675-1680. [PMID: 34479819 DOI: 10.1016/j.hlc.2021.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Prevention of cardiovascular events and regression of atherosclerotic changes are the primary aims of preventive cardiovascular medicine. Arterial thrombosis is caused by endothelial dysfunction, which disrupts vascular haemostasis. Glucagon-like peptide 1 (GLP-1) receptor agonists have been initially used as glucose lowering agents, but over time have been used for other indications due to their cardiorenal benefit, as well as their benefit in the regression of atherosclerosis process. The aim of this paper is to present the benefits of GLP-1 receptor agonists in the prevention of atherosclerotic changes, in the preservation of brain vascular function, and to show the possible role in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Edin Begic
- Department of Cardiology, General Hospital "Prim.Dr. Abdulah Nakas", Sarajevo, Bosnia and Herzegovina; Department of Pharmacology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina.
| | - Mirsada Causevic
- Department of Pharmacology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
Kolinko Y, Marsalova L, Proskauer Pena S, Kralickova M, Mouton PR. Stereological Changes in Microvascular Parameters in Hippocampus of a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2021; 84:249-260. [PMID: 34542078 PMCID: PMC8609684 DOI: 10.3233/jad-210738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Microcirculatory factors play an important role in amyloid-β (Aβ)-related neuropathology in Alzheimer's disease (AD). Transgenic (Tg) rat models of mutant Aβ deposition can enhance our understanding of this microvascular pathology. OBJECTIVE Here we report stereology-based quantification and comparisons (between- and within-group) of microvessel length and number and associated parameters in hippocampal subregions in Tg model of AD in Fischer 344 rats and non-Tg littermates. METHODS Systematic-random samples of tissue sections were processed and laminin immunostained to visualize microvessels through the entire hippocampus in Tg and non-Tg rats. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in dentate gyrus (DG) and cornu ammonis (CA) subregions. RESULTS Thin hair-like capillaries are common near Aβ plaques in hippocampal subregions of Tg rats. There are a 53% significant increase in average length per capillary across entire hippocampus (p≤0.04) in Tg compared to non-Tg rats; 49% reduction in capillary length in DG (p≤0.02); and, higher microvessel density in principal cell layers (p≤0.03). Furthermore, within-group comparisons confirm Tg but not non-Tg rats have significant increase in number density (p≤0.01) and potential diffusion distance (p≤0.04) of microvessels in principal cell layers of hippocampal subregions. CONCLUSION We show the Tg deposition of human Aβ mutations in rats disrupts the wild-type microanatomy of hippocampal microvessels. Stereology-based microvascular parameters could promote the development of novel strategies for protection and the therapeutic management of AD.
Collapse
Affiliation(s)
- Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lucie Marsalova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Peter R. Mouton
- SRC Biosciences, Tampa, FL, USA
- University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Courtie E, Veenith T, Logan A, Denniston AK, Blanch RJ. Retinal blood flow in critical illness and systemic disease: a review. Ann Intensive Care 2020; 10:152. [PMID: 33184724 PMCID: PMC7661622 DOI: 10.1186/s13613-020-00768-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Assessment and maintenance of end-organ perfusion are key to resuscitation in critical illness, although there are limited direct methods or proxy measures to assess cerebral perfusion. Novel non-invasive methods of monitoring microcirculation in critically ill patients offer the potential for real-time updates to improve patient outcomes. MAIN BODY Parallel mechanisms autoregulate retinal and cerebral microcirculation to maintain blood flow to meet metabolic demands across a range of perfusion pressures. Cerebral blood flow (CBF) is reduced and autoregulation impaired in sepsis, but current methods to image CBF do not reproducibly assess the microcirculation. Peripheral microcirculatory blood flow may be imaged in sublingual and conjunctival mucosa and is impaired in sepsis. Retinal microcirculation can be directly imaged by optical coherence tomography angiography (OCTA) during perfusion-deficit states such as sepsis, and other systemic haemodynamic disturbances such as acute coronary syndrome, and systemic inflammatory conditions such as inflammatory bowel disease. CONCLUSION Monitoring microcirculatory flow offers the potential to enhance monitoring in the care of critically ill patients, and imaging retinal blood flow during critical illness offers a potential biomarker for cerebral microcirculatory perfusion.
Collapse
Affiliation(s)
- E Courtie
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - T Veenith
- Critical Care Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - A Logan
- Axolotl Consulting Ltd, Droitwich, WR9 0JS, Worcestershire, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | - A K Denniston
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Centre for Rare Diseases, Institute of Translational Medicine, Birmingham Health Partners, Birmingham, UK
| | - R J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
| |
Collapse
|
10
|
Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration. THE CEREBELLUM 2020; 18:855-865. [PMID: 31418135 DOI: 10.1007/s12311-019-01067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar diseases causing substantial cell loss often lead to severe functional deficits and restoration of cerebellar function is difficult. Neurotransplantation therapy could become a hopeful method, but there are still many limitations and unknown aspects. Studies in a variety of cerebellar mutant mice reflecting heterogeneity of human cerebellar degenerations show promising results as well as new problems and questions to be answered. The aim of this work was to compare the development of embryonic cerebellar grafts in adult B6CBA Lurcher and B6.BR pcd mutant mice and strain-matched healthy wild type mice. Performance in the rotarod test, graft survival, structure, and volume was examined 2 months after the transplantation or sham-operation. The grafts survived in most of the mice of all types. In both B6CBA and B6.BR wild type mice and in pcd mice, colonization of the host's cerebellum was a common finding, while in Lurcher mice, the grafts showed a low tendency to infiltrate the host's cerebellar tissue. There were no significant differences in graft volume between mutant and wild type mice. Nevertheless, B6CBA mice had smaller grafts than their B6.BR counterparts. The transplantation did not improve the performance in the rotarod test. The study showed marked differences in graft integration into the host's cerebellum in two types of cerebellar mutants, suggesting disease-specific factors influencing graft fate.
Collapse
|
11
|
Mbagwu SI, Filgueira L. Differential Expression of CD31 and Von Willebrand Factor on Endothelial Cells in Different Regions of the Human Brain: Potential Implications for Cerebral Malaria Pathogenesis. Brain Sci 2020; 10:E31. [PMID: 31935960 PMCID: PMC7016814 DOI: 10.3390/brainsci10010031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.
Collapse
Affiliation(s)
- Smart Ikechukwu Mbagwu
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, 435101 Nnewi Campus, Nigeria
| | - Luis Filgueira
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
12
|
Erdener ŞE, Dalkara T. Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Front Neurol 2019; 10:889. [PMID: 31474933 PMCID: PMC6707104 DOI: 10.3389/fneur.2019.00889] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
The cerebral microcirculation holds a critical position to match the high metabolic demand by neuronal activity. Functionally, microcirculation is virtually inseparable from other nervous system cells under both physiological and pathological conditions. For successful bench-to-bedside translation of neuroprotection research, the role of microcirculation in acute and chronic neurodegenerative disorders appears to be under-recognized, which may have contributed to clinical trial failures with some neuroprotectants. Increasing data over the last decade suggest that microcirculatory impairments such as endothelial or pericyte dysfunction, morphological irregularities in capillaries or frequent dynamic stalls in blood cell flux resulting in excessive heterogeneity in capillary transit may significantly compromise tissue oxygen availability. We now know that ischemia-induced persistent abnormalities in capillary flow negatively impact restoration of reperfusion after recanalization of occluded cerebral arteries. Similarly, microcirculatory impairments can accompany or even precede neural loss in animal models of several neurodegenerative disorders including Alzheimer's disease. Macrovessels are relatively easy to evaluate with radiological or experimental imaging methods but they cannot faithfully reflect the downstream microcirculatory disturbances, which may be quite heterogeneous across the tissue at microscopic scale and/or happen fast and transiently. The complexity and size of the elements of microcirculation, therefore, require utilization of cutting-edge imaging techniques with high spatiotemporal resolution as well as multidisciplinary team effort to disclose microvascular-neurodegenerative connection and to test treatment approaches to advance the field. Developments in two photon microscopy, ultrafast ultrasound, and optical coherence tomography provide valuable experimental tools to reveal those microscopic events with high resolution. Here, we review the up-to-date advances in understanding of the primary microcirculatory abnormalities that can result in neurodegenerative processes and the combined neurovascular protection approaches that can prevent acute as well as chronic neurodegeneration.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. THE CEREBELLUM 2019; 17:428-437. [PMID: 29450804 DOI: 10.1007/s12311-018-0928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For many degenerative cerebellar diseases, currently, no effective treatment that would substantially restore cerebellar functions is available. Neurotransplantation could be a promising therapy for such cases. Nevertheless, there are still severe limitations for routine clinical use. The aim of the work was to assess volume and morphology and functional impact on motor skills of an embryonic cerebellar graft injected in the form of cell suspension in Lurcher mutant and wild-type mice of the B6CBA and C3H strains after a 6-month survival period. The grafts survived in the majority of the mice. In both B6CBA and C3H Lurcher mice, most of the grafts were strictly delimited with no tendency to invade the host cerebellum, while in wild-type mice, graft-derived Purkinje cells colonized the host's cerebellum. In C3H Lurcher mice, but not in B6CBA Lurchers, the grafts had smaller volume than in their wild-type counterparts. C3H wild-type mice had significantly larger grafts than B6CBA wild-type mice. No positive effect of the transplantation on performance in the rotarod test was observed. The findings suggest that the niche of the Lurcher mutant cerebellum has a negative impact on integration of grafted cells. This factor seems to be limiting for specific functional effects of the transplantation therapy in this mouse model of cerebellar degeneration.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| | - Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Jakub Kubik
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Erik Ulbricht
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
| |
Collapse
|
14
|
Kolinko Y, Kralickova M, Tonar Z. The impact of pericytes on the brain and approaches for their morphological analysis. J Chem Neuroanat 2018; 91:35-45. [DOI: 10.1016/j.jchemneu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
15
|
Kalinichenko SG, Pushchin II. The modular architecture and neurochemical patterns in the cerebellar cortex. J Chem Neuroanat 2018; 92:16-24. [PMID: 29753860 DOI: 10.1016/j.jchemneu.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 10/24/2022]
Abstract
The review deals with topical issues of the neuronal arrangement underlying basic cerebellar functions. The cerebellum and its auxiliary structures contain several hundreds of modules (so called "microzones"). Each module receives the corticopetal input specific for the lobule it belongs to and forms the topographic projection. The precision of the major input-output signal flow in the cerebellar cortex is provided by a pronounced stratification of its synaptic zones of a various origin and regular topography of its afferent connections, interneurons, and efferent neurons. There is a nice match between the anatomical and functional coordinates of the modules, whose spatial boundaries are determined by the spread of afferent excitation and local interneuron connections. The dynamic characteristics of the modules are analyzed by the example of the formation of the nitrergic neuron ensembles and cerebellar projections of corticopetal fibers. The authors discuss the cerebellar blood flow and its relation to the activity of NO/GABAergic Lugaro cells and other interneurons in the cerebellar cortex. A generalized scheme of intra- and intermodular communication is proposed.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Street, Vladivostok, 690041, Russia.
| |
Collapse
|
16
|
Abstract
Neurotransplantation may be a promising approach for therapy of cerebellar diseases characterized by a substantial loss of neurons. Neurotransplantation could rescue neurons from degeneration and maintain cerebellar reserve, facilitate cerebellar compensation, or help reconstruct damaged neural circuits by cell substitution. These mechanisms of action can be of varying importance according to the type of cerebellar disease. Neurotransplantation therapy in cerebellar ataxias is still at the stage of experimental studies. There is currently little knowledge regarding cerebellar patients. Nevertheless, data provided by experiments in animal models of cerebellar degeneration and both clinical studies and experiences in patients with other neurologic diseases enable us to suggest basic principles, expectations, limitations, and future directions of neurotransplantation therapy for cerebellar diseases.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathological Physiology and Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic.
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
17
|
Kubíková T, Kochová P, Tomášek P, Witter K, Tonar Z. Numerical and length densities of microvessels in the human brain: Correlation with preferential orientation of microvessels in the cerebral cortex, subcortical grey matter and white matter, pons and cerebellum. J Chem Neuroanat 2017; 88:22-32. [PMID: 29113946 DOI: 10.1016/j.jchemneu.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
To provide basic data on the local differences in density of microvessels between various parts of the human brain, including representative grey and white matter structures of the cerebral hemispheres, the brain stem and the cerebellum, we quantified the numerical density NV and the length density LV of microvessels in two human brains. We aimed to correlate the density of microvessels with previously published data on their preferential orientation (anisotropy). Microvessels were identified using immunohistochemistry for laminin in 32 samples harvested from the following brain regions of two adult individuals: the cortex of the telencephalon supplied by the anterior, middle, and posterior cerebral artery; the basal ganglia (putamen and globus pallidus); the thalamus; the subcortical white matter of the telencephalon; the internal capsule; the pons; the cerebellar cortex; and the cerebellar white matter. NV was calculated from the number of vascular branching points and their valence, which were assessed using the optical disector in 20-μm-thick sections. LV was estimated using counting frames applied to routine sections with randomized cutting planes. After correction for shrinkage, NV in the cerebral cortex was 1311±326mm-3 (mean±SD) and LV was 255±119mm-2. Similarly, in subcortical grey matter (which included the basal ganglia and thalamus), NV was 1350±445mm-3 and LV was 328±117mm-2. The vascular networks of cortical and subcortical grey matter were comparable. Their densities were greater than in the white matter, with NV=222±147mm-3 and LV=160±96mm-2. NV was moderately correlated with LV. In parts of brain with greater NV, blood vessels lacked a preferential orientation. Our data were in agreement with other studies on microvessel density focused on specific brain regions, but showed a greater variability, thus mapping the basic differences among various parts of brain. To facilitate the planning of other studies on brain vascularity and to support the development of computational models of human brain circulation based on real microvascular morphology; stereological data in form of continuous variables are made available as supplements.
Collapse
Affiliation(s)
- Tereza Kubíková
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
| | - Petra Kochová
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
| | - Petr Tomášek
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; Department of Forensic Medicine, Second Faculty of Medicine, Charles University, Budinova 2, 180 81 Prague 8, Prague, Czech Republic
| | - Kirsti Witter
- Institute of Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Zbyněk Tonar
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic.
| |
Collapse
|
18
|
Bhaduri B, Nolan RM, Shelton RL, Pilutti LA, Motl RW, Moss HE, Pula JH, Boppart SA. Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:2321-30. [PMID: 27375947 PMCID: PMC4918585 DOI: 10.1364/boe.7.002321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 05/13/2023]
Abstract
Although retinal vasculitis is common in multiple sclerosis (MS), it is not known if MS is associated with quantitative abnormalities in retinal blood vessels (BVs). Optical coherence tomography (OCT) is suitable for examining the integrity of the anterior visual pathways in MS. In this paper we have compared the size and number of retinal blood vessels in patients with MS, with and without a history of optic neuritis (ON), and control subjects from the cross-sectional retinal images from OCT. Blood vessel diameter (BVD), blood vessel number (BVN), and retinal nerve fiber layer thickness (RNFLT) were extracted from OCT images collected from around the optic nerves of 129 eyes (24 control, 24 MS + ON, 81 MS-ON) of 71 subjects. Associations between blood vessel metrics, MS diagnosis, MS disability, ON, and RNFLT were evaluated using generalized estimating equation (GEE) models. MS eyes had a lower total BVD and BVN than control eyes. The effect was more pronounced with increased MS disability, and persisted in multivariate models adjusting for RNFLT and ON history. Twenty-nine percent (29%) of MS subjects had fewer retinal blood vessels than all control subjects. MS diagnosis, disability, and ON history were not associated with average blood vessel size. The relationship between MS and lower total BVD/BVN is not accounted for by RNFLT or ON. Further study is needed to determine the relationship between OCT blood vessel metrics and qualitative retinal blood vessel abnormalities in MS.
Collapse
Affiliation(s)
- Basanta Bhaduri
- Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826004, India
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 619 South Wright Street, Champaign, IL 61820, USA
| | - Ryan M. Nolan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 619 South Wright Street, Champaign, IL 61820, USA
| | - Ryan L. Shelton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 619 South Wright Street, Champaign, IL 61820, USA
| | - Lara A. Pilutti
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Robert W. Motl
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Heather E. Moss
- Department of Ophthalmology & Visual Sciences; Department of Neurology & Rehabilitation, University of Illinois at Chicago, 1855 W Taylor St, Chicago, IL 60614 USA
| | - John H. Pula
- Department of Neurology, Northshore University Healthsystem, 2050 Pfingsten Rd, Glenview, Illinois 60026, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 619 South Wright Street, Champaign, IL 61820, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, Illinois 61801, USA
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, 506 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
19
|
Kolinko Y, Cendelin J, Kralickova M, Tonar Z. Smaller Absolute Quantities but Greater Relative Densities of Microvessels Are Associated with Cerebellar Degeneration in Lurcher Mice. Front Neuroanat 2016; 10:35. [PMID: 27147979 PMCID: PMC4835681 DOI: 10.3389/fnana.2016.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/15/2016] [Indexed: 11/17/2022] Open
Abstract
Degenerative affections of nerve tissues are often accompanied by changes of vascularization. In this regard, not much is known about hereditary cerebellar degeneration. In this study, we compared the vascularity of the individual cerebellar components and the mesencephalon of 3-month-old wild type mice (n = 5) and Lurcher mutant mice, which represent a model of hereditary olivocerebellar degeneration (n = 5). Paraformaldehyde-fixed brains were processed into 18-μm thick serial sections with random orientation. Microvessels were visualized using polyclonal rabbit anti-laminin antibodies. Then, the stacks comprised of three 5-μm thick optical sections were recorded using systematic uniform random sampling. Stereological assessment was conducted based on photo-documentation. We found that each of the cerebellar components has its own features of vascularity. The greatest number and length of vessels were found in the granular layer; the number of vessels was lower in the molecular layer, and the lowest number of vessels was observed in the cerebellar nuclei corresponding with their low volume. Nevertheless, the nuclei had the greatest density of blood vessels. The reduction of cerebellum volume in the Lurcher mice was accompanied by a reduction in vascularization in the individual cerebellar components, mainly in the cortex. Moreover, despite the lower density of microvessels in the Lurcher mice compared with the wild type mice, the relative density of microvessels in the cerebellar cortex and nuclei was greater in Lurcher mice. The complete primary morphometric data, in the form of continuous variables, is included as a supplement. Mapping of the cerebellar and midbrain microvessels has explanatory potential for studies using mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Jan Cendelin
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Zbynek Tonar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| |
Collapse
|