1
|
Chan SY, Kuo CW, Liao TT, Peng CW, Hsieh TH, Chang MY. Time-course gait pattern analysis in a rat model of foot drop induced by ventral root avulsion injury. Front Hum Neurosci 2022; 16:972316. [PMID: 36601128 PMCID: PMC9806139 DOI: 10.3389/fnhum.2022.972316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Foot drop is a common clinical gait impairment characterized by the inability to raise the foot or toes during walking due to the weakness of the dorsiflexors of the foot. Lumbar spine disorders are common neurogenic causes of foot drop. The accurate prognosis and treatment protocols of foot drop are not well delineated in the scientific literature due to the heterogeneity of the underlying lumbar spine disorders, different severities, and distinct definitions of the disease. For translational purposes, the use of animal disease models could be the best way to investigate the pathogenesis of foot drop and help develop effective therapeutic strategies for foot drops. However, no relevant and reproducible foot drop animal models with a suitable gait analysis method were developed for the observation of foot drop symptoms. Therefore, the present study aimed to develop a ventral root avulsion (VRA)-induced foot drop rat model and record detailed time-course changes of gait pattern following L5, L6, or L5 + L6 VRA surgery. Our results suggested that L5 + L6 VRA rats exhibited changes in gait patterns, as compared to sham lesion rats, including a significant reduction of walking speed, step length, toe spread, and swing phase time, as well as an increased duration of the stance phase time. The ankle kinematic data exhibited that the ankle joint angle increased during the mid-swing stage, indicating a significant foot drop pattern during locomotion. Time-course observations displayed that these gait impairments occurred as early as the first-day post-lesion and gradually recovered 7-14 days post-injury. We conclude that the proposed foot drop rat model with a video-based gait analysis approach can precisely detect the foot drop pattern induced by VRA in rats, which can provide insight into the compensatory changes and recovery in gait patterns and might be useful for serving as a translational platform bridging human and animal studies for developing novel therapeutic strategies for foot drop.
Collapse
Affiliation(s)
- Shu-Yen Chan
- Department of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan,*Correspondence: Ming-Yuan Chang Tsung-Hsun Hsieh
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan,Discipline of Marketing, College of Management, Yuan Ze University, Taoyuan, Taiwan,*Correspondence: Ming-Yuan Chang Tsung-Hsun Hsieh
| |
Collapse
|
2
|
D'Agnelli S, Amodeo G, Franchi S, Verduci B, Baciarello M, Panerai AE, Bignami EG, Sacerdote P. Frailty and pain, human studies and animal models. Ageing Res Rev 2022; 73:101515. [PMID: 34813977 DOI: 10.1016/j.arr.2021.101515] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
The hypothesis that pain can predispose to frailty development has been recently investigated in several clinical studies suggesting that frailty and pain may share some mechanisms. Both pain and frailty represent important clinical and social problems and both lack a successful treatment. This circumstance is mainly due to the absence of in-depth knowledge of their pathological mechanisms. Evidence of shared pathways between frailty and pain are preliminary. Indeed, many clinical studies are observational and the impact of pain treatment, and relative pain-relief, on frailty onset and progression has never been investigated. Furthermore, preclinical research on this topic has yet to be performed. Specific researches on the pain-frailty relation are needed. In this narrative review, we will attempt to point out the most relevant findings present in both clinical and preclinical literature on the topic, with particular attention to genetics, epigenetics and inflammation, in order to underline the existing gaps and the potential future interventional strategies. The use of pain and frailty animal models discussed in this review might contribute to research in this area.
Collapse
|
3
|
Yavuz Saricay L, Bayraktutar BN, Kenyon BM, Hamrah P. Concurrent ocular pain in patients with neurotrophic keratopathy. Ocul Surf 2021; 22:143-151. [PMID: 34411735 DOI: 10.1016/j.jtos.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To illustrate that ocular pain may occur in patients with neurotrophic keratopathy (NK) that typically are thought to lack symptoms of discomfort, and that aa subset of these patients may also present with neuropathic corneal pain (NCP). METHOD Retrospective Case series of 7 stage 1 NK patients who presented with concurrent ocular pain, as confirmed by clinical examination, proparacaine challenge test, and in vivo corneal confocal microscopy (IVCM). Records were assessed for results of ocular surface disease index (OSDI), pain on visual analog scale (VAS), ocular pain assessment survey (OPAS), best-corrected visual acuity (BCVA), corneal fluorescein staining (CFS) score, and IVCM findings. IVCM findings were compared to that of 20 healthy reference controls. RESULTS Mean age of patients was 63.7 ± 11.6 (range 44-76) years and 56.9 ± 8.6 (range 42-74) years in reference controls (p = 0.11). At presentation, ocular discomfort was 8.0 ± 1.3 (range 7-10) on VAS and mean OSDI scores were 72.26 ± 6.81 (range 62.50-79.54). Mean BCVA was 20/40, and mean CFS scores were 3.43 ± 0.79 (range 2-4) on the Oxford scale. IVCM analysis showed significant decrease in mean total, main and branch nerve densities in ranges consistent with NK as compared to normal controls (p < 0.001 for all), increased dendritiform cell density in three patients (p < 0.001), and the presence of microneuromas in six of the patients. CONCLUSION Patients with NK are thought to present with hypoesthesia. However, nerve damage and inflammation, which play a role in the development of NK may result in the development of chronic ocular pain, such as NCP, resulting in potential underdiagnosis of either disease.
Collapse
Affiliation(s)
- Leyla Yavuz Saricay
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical School, Tufts Medical Center School of Medicine, Boston, USA
| | - Betul N Bayraktutar
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical School, Tufts Medical Center School of Medicine, Boston, USA
| | - Brendan M Kenyon
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Program in Neuroscience, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical School, Tufts Medical Center School of Medicine, Boston, USA; Program in Neuroscience, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Kim KJ, Hwang J, Park JY, Namgung U. Augmented Buyang Huanwu Decoction facilitates axonal regeneration after peripheral nerve transection through the regulation of inflammatory cytokine production. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113063. [PMID: 32505841 DOI: 10.1016/j.jep.2020.113063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal formulation Buyang Huanwu Decoction (BYHWD) has been used to treat cardiovascular disorders including cerebral ischemia. Recent studies showed its effects on promoting axonal regeneration after nerve injury. However, compositional reformulation supplemented with herbal components that regulates inflammation may increase its efficacy for nerve repair. AIM OF THE STUDY We prepared a new herbal decoction by adding selected herbal components to BYHWD (augmented BYHWD; ABHD) and investigated the effect of ABHD on the production of inflammatory cytokines and axonal regeneration using an animal model of nerve transection and coaptation (NTC). MATERIALS AND METHODS A rat model of NTC was performed on the sciatic nerve. The sciatic nerve and dorsal root ganglion (DRG) were isolated and used for immunofluorescence staining and western blot analysis. DRG tissue was also used to prepare primary neuron culture and the length of neurites was analyzed. Sensorimotor nerve activities were assessed by rotarod and von Frey tests. RESULTS Three herbal components that facilitated neurite outgrowth were chosen to formulate ABHD. ABHD administration into the sciatic nerve 1 week or 3 months after NTC facilitated axonal regeneration. Cell division cycle 2 (Cdc2) and brain-derived neurotrophic factor (BDNF) proteins were induced from the reconnected distal portion of the sciatic nerve and the levels were further elevated by in vivo administration of ABHD. Phospho-Erk1/2 level was increased by ABHD treatment as well, implying its role in mediating retrograde transport of BDNF signals into the neuronal cell body. Production of inflammatory cytokines IL-1β and TNF-α was induced in the reconnected nerve but attenuated by ABHD treatment. Behavioral tests revealed that ABHD treatment improved functional recovery of sensorimotor activities. CONCLUSIONS A newly formulated ABHD is effective at regulating the production of inflammatory cytokines and promoting axonal regeneration after nerve transection and may be considered to develop therapeutic strategies for peripheral nerve injury disorders.
Collapse
Affiliation(s)
- Ki-Joong Kim
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea.
| | - Jinyeon Hwang
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea.
| | - Ji-Yeon Park
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea.
| | - Uk Namgung
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
5
|
Neves M, Tavares ALF, Reginato A, Kakihata CMM, Bertolini GRF, Ribeiro LFC. Low-Level Laser Therapy in Different Wavelengths on the Tibialis Anterior Muscle of Wistar Rats After Nerve Compression Injury. J Manipulative Physiol Ther 2020; 43:700-707. [PMID: 32896420 DOI: 10.1016/j.jmpt.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Traumatic injuries are common and may promote disruption of neuromuscular communication, triggering phenomena that lead to nerve degeneration and affect muscle function. A laser accelerates tissue recovery; however, the parameters used are varied, making it difficult to compare studies. The purpose of this study was to evaluate the effect of low-level laser therapy, at 660- and 830-nm wavelengths, on the tibialis anterior muscle of Wistar rats after sciatic nerve compression. METHODS Twenty animals were separated into 4 groups: control, sciatic nerve injury, lesion + 660-nm laser, and lesion + 830-nm laser. In the lesion groups, the right sciatic nerve was surgically exposed and compressed with hemostatic forceps for 30 seconds. After the third postoperative day, the groups with laser therapy were submitted to treatment for 2 weeks totaling 10 applications, performed directly on the surgical scar of the nerve injury. Grip strength was analyzed before and after the nerve injury and during the treatment period. The tibialis anterior muscle was processed for light microscopy, area measurement, smaller diameter, number of fibers, nuclei, and connective tissue. RESULTS The animals submitted to the injury experienced muscular atrophy and morphological changes in the number of muscle fibers and nuclei. In the connective tissue morphometry, there was a decrease in the treated groups compared with the untreated groups. CONCLUSION The laser treatment at different wavelengths showed no improvement in the tibialis anterior muscle of Wistar rats within the morphological and functional aspects evaluated.
Collapse
Affiliation(s)
- Morgana Neves
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Alana L F Tavares
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Aline Reginato
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Camila M M Kakihata
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| | - Gladson R F Bertolini
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil.
| | - Lucinéia F C Ribeiro
- Graduate Program in Biosciences and Health, State University of Western Paraná (Unioeste), Cascavel, Paraná, Brazil
| |
Collapse
|
6
|
CD4+ αβ T cell infiltration into the leptomeninges of lumbar dorsal roots contributes to the transition from acute to chronic mechanical allodynia after adult rat tibial nerve injuries. J Neuroinflammation 2018; 15:81. [PMID: 29544518 PMCID: PMC5855984 DOI: 10.1186/s12974-018-1115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Background Antigen-specific and MHCII-restricted CD4+ αβ T cells have been shown or suggested to play an important role in the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. However, it is still largely unknown where these T cells infiltrate along the somatosensory pathways transmitting mechanical allodynia to initiate the development of chronic mechanical allodynia after nerve injuries. Therefore, the purpose of this study was to ascertain the definite neuroimmune interface for these T cells to initiate the development of chronic mechanical allodynia after peripheral nerve injuries. Methods First, we utilized both chromogenic and fluorescent immunohistochemistry (IHC) to map αβ T cells along the somatosensory pathways for the transmission of mechanical allodynia after modified spared nerve injuries (mSNIs), i.e., tibial nerve injuries, in adult male Sprague-Dawley rats. We further characterized the molecular identity of these αβ T cells selectively infiltrating into the leptomeninges of L4 dorsal roots (DRs). Second, we identified the specific origins in lumbar lymph nodes (LLNs) for CD4+ αβ T cells selectively present in the leptomeninges of L4 DRs by two experiments: (1) chromogenic IHC in these lymph nodes for CD4+ αβ T cell responses after mSNIs and (2) fluorescent IHC for temporal dynamics of CD4+ αβ T cell infiltration into the L4 DR leptomeninges after mSNIs in prior lymphadenectomized or sham-operated animals to LLNs. Finally, following mSNIs, we evaluated the effects of region-specific targeting of these T cells through prior lymphadenectomy to LLNs and chronic intrathecal application of the suppressive anti-αβTCR antibodies on the development of mechanical allodynia by von Frey hair test and spinal glial or neuronal activation by fluorescent IHC. Results Our results showed that during the sub-acute phase after mSNIs, αβ T cells selectively infiltrate into the leptomeninges of the lumbar DRs along the somatosensory pathways responsible for transmitting mechanical allodynia. Almost all these αβ T cells are CD4 positive. Moreover, the temporal dynamics of CD4+ αβ T cell infiltration into the lumbar DR leptomeninges are specifically determined by LLNs after mSNIs. Prior lymphadenectomy to LLNs specifically reduces the development of mSNI-induced chronic mechanical allodynia. More importantly, intrathecal application of the suppressive anti-αβTCR antibodies reduces the development of mSNI-induced chronic mechanical allodynia. In addition, prior lymphadenectomy to LLNs attenuates mSNI-induced spinal activation of glial cells and PKCγ+ excitatory interneurons. Conclusions The noteworthy results here provide the first evidence that CD4+ αβ T cells selectively infiltrate into the DR leptomeninges of the somatosensory pathways transmitting mechanical allodynia and contribute to the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. Electronic supplementary material The online version of this article (10.1186/s12974-018-1115-7) contains supplementary material, which is available to authorized users.
Collapse
|