1
|
Grau-Mercier L, Grandpierre RG, Alonso S, Savey A, Le Floch A, de Oliveira F, Masia T, Jory N, Coisy F, Claret PG. S100B serum level: A relevant biomarker for the management of non-traumatic headaches in emergency care? Am J Emerg Med 2023; 68:132-137. [PMID: 37001377 DOI: 10.1016/j.ajem.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The diagnostic of primary or secondary headaches in emergency units is mostly based on brain imaging, which is expensive and sometimes hardly accessible. An increase in serum S100B protein has already been found in several neurological conditions inducing brain damage. The objective of this study was to assess the diagnostic performance of S100B serum assay to distinguish primary and secondary headaches among patients with non-traumatic headaches in the emergency department. METHODS This was a phase 2, prospective, monocentric diagnostic study. Eighty-one adult patients with non-traumatic headaches in the emergency department were included. In addition to the usual management, a blood assay of the S100B protein was performed in the emergency department, as well as a brain MRI between 48 and 96 h if not performed during the initial management. The primary or secondary headache diagnosis was made at one month by an expert committee, blindly of the results of the S100B assay. The primary outcome was the blood assay of the S100B protein. RESULTS There was 63 patients for analysis in the primary headache group and 17 in the secondary headache group. The S100B protein assay was significantly higher in secondary headaches than primary headaches, with an AUC of the ROC curve of 0.67. The optimal threshold of 0.06 μg.L-1 allowed to obtain those diagnostic characteristics: sensitivity 75% [48; 93], specificity 62% [48; 74], PPV 35% [20; 54] and NPV 90% [76; 97]. The association between the S100B protein level and the onset of pain was significantly higher for patients with headaches <3 h. CONCLUSION The assay of the S100B protein could be useful in the management of this pathology in emergencies. Future studies taking into account dosing time and etiologies could be conducted in order to refine its use in practice.
Collapse
|
2
|
Bruder N, Higashida R, Santin-Janin H, Dubois C, Aldrich EF, Marr A, Roux S, Mayer SA. The REACT study: design of a randomized phase 3 trial to assess the efficacy and safety of clazosentan for preventing deterioration due to delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. BMC Neurol 2022; 22:492. [PMID: 36539711 PMCID: PMC9763815 DOI: 10.1186/s12883-022-03002-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND For patients presenting with an aneurysmal subarachnoid hemorrhage (aSAH), delayed cerebral ischemia (DCI) is a significant cause of morbidity and mortality. The REACT study is designed to assess the safety and efficacy of clazosentan in preventing clinical deterioration due to DCI in patients with aSAH. METHODS REACT is a prospective, multicenter, randomized phase 3 study that is planned to enroll 400 patients with documented aSAH from a ruptured cerebral aneurysm, randomized 1:1 to 15 mg/hour intravenous clazosentan vs. placebo, in approximately 100 sites and 15 countries. Eligible patients are required to present at hospital admission with CT evidence of significant subarachnoid blood, defined as a thick and diffuse clot that is more than 4 mm in thickness and involves 3 or more basal cisterns. The primary efficacy endpoint is the occurrence of clinical deterioration due to DCI up to 14 days post-study drug initiation. The main secondary endpoint is the occurrence of clinically relevant cerebral infarction at Day 16 post-study drug initiation. Other secondary endpoints include the modified Rankin Scale (mRS) and the Glasgow Outcome Scale-Extended (GOSE) score at Week 12 post-aSAH, dichotomized into poor and good outcome. Radiological results and clinical endpoints are centrally evaluated by independent committees, blinded to treatment allocation. Exploratory efficacy endpoints comprise the assessment of cognition status at 12 weeks and quality of life at 12 and 24 weeks post aSAH. DISCUSSION In the REACT study, clazosentan is evaluated on top of standard of care to determine if it reduces the risk of clinical deterioration due to DCI after aSAH. The selection of patients with thick and diffuse clots is intended to assess the benefit/risk profile of clazosentan in a population at high risk of vasospasm-related ischemic complications post-aSAH. TRIAL REGISTRATION (ADDITIONAL FILE 1): ClinicalTrials.gov (NCT03585270). EU Clinical Trial Register (EudraCT Number: 2018-000241-39).
Collapse
Affiliation(s)
- Nicolas Bruder
- Department of Anesthesia and Critical Care, Hôpital de la Timone, Aix-Marseille Université, 264 rue St-Pierre, 13005, Marseille, France.
| | - Randall Higashida
- Department of Neuro Interventional Radiology, University of California San Francisco Medical Center, San Francisco, USA
| | | | - Cécile Dubois
- Biometry, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Angelina Marr
- Global Clinical Development, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Sébastien Roux
- Global Clinical Development, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Stephan A Mayer
- Neurocritical Care and Emergency Neurology Services, Westchester Medical Center Health Network, Valhalla, USA
- Department of Neurology and Neurosurgery, New York Medical College, New York, USA
| |
Collapse
|
3
|
Li R, Zhao M, Yao D, Zhou X, Lenahan C, Wang L, Ou Y, He Y. The role of the astrocyte in subarachnoid hemorrhage and its therapeutic implications. Front Immunol 2022; 13:1008795. [PMID: 36248855 PMCID: PMC9556431 DOI: 10.3389/fimmu.2022.1008795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important public health concern with high morbidity and mortality worldwide. SAH induces cell death, blood−brain barrier (BBB) damage, brain edema and oxidative stress. As the most abundant cell type in the central nervous system, astrocytes play an essential role in brain damage and recovery following SAH. This review describes astrocyte activation and polarization after SAH. Astrocytes mediate BBB disruption, glymphatic–lymphatic system dysfunction, oxidative stress, and cell death after SAH. Furthermore, astrocytes engage in abundant crosstalk with other brain cells, such as endothelial cells, neurons, pericytes, microglia and monocytes, after SAH. In addition, astrocytes also exert protective functions in SAH. Finally, we summarize evidence regarding therapeutic approaches aimed at modulating astrocyte function following SAH, which could provide some new leads for future translational therapy to alleviate damage after SAH.
Collapse
Affiliation(s)
- Rong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Ling Wang
- Department of Operating room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yue He,
| |
Collapse
|
4
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Li M, Ye M, Zhang G. Aberrant expression of miR-199a in newborns with hypoxic-ischemic encephalopathy and its diagnostic and prognostic significance when combined with S100B and NSE. Acta Neurol Belg 2021; 121:707-714. [PMID: 32533551 DOI: 10.1007/s13760-020-01408-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a disorder mainly due to asphyxia during the perinatal period, and late diagnosis leads to high mortality. In this study, the expression of microRNA-199a (miR-199a) in HIE newborns was investigated, as well as its clinical significance in HIE diagnosis and prognosis. Circulating levels of S100B and NSE in HIE newborns were measured using enzyme-linked immunosorbent assay, and the expression of miR-199a was analyzed using quantitative real-time PCR. The diagnostic value of miR-199a, S100B and NSE was evaluated using the receiver operating characteristic (ROC) analysis, and their prognostic value was assessed by the evaluation of Gesell intellectual development of the HIE newborns. HIE newborns possessed significantly increased levels of S100B and NSE and decreased miR-199a (all P < 0.01). The Neonatal Behavioral Neurological Assessment (NBNA) score of HIE newborns was negatively correlated with S100B and NSE, while was positively correlated miR-199a. The ROC analysis results showed the diagnostic value of serum miR-199a, and the combined detection of miR-199a, S100B and NSE could obtained the highest diagnostic accuracy in HIE newborns. miR-199a expression was lowest in newborns with severe HIE, and it had diagnostic potential to distinguish HIE cases with different severity. Regarding the prognosis of neonatal HIE, the correlation of miR-199a, S100B, NSE with Gesell intellectual development was found in HIE newborns. The decreased miR-199a in HIE newborns serves as a potential diagnostic biomarker and may help to improve the diagnostic and prognostic value of S100B and NSE in neonatal HIE.
Collapse
Affiliation(s)
- Min Li
- Department of Neonatology, Women and Children's Health Care Hospital of Linyi, Linyi, 276001, Shandong, China
| | - Mei Ye
- Department of Neonatology, Women and Children's Health Care Hospital of Linyi, Linyi, 276001, Shandong, China
| | - Guangyun Zhang
- Department of Pediatrics, Women and Children's Health Care Hospital of Linyi, No.1, Qinghe South Road, Linyi, 276001, Shandong, China.
| |
Collapse
|
6
|
Wood R, Durali P, Wall I. Impact of Dual Cell Co-culture and Cell-conditioned Media on Yield and Function of a Human Olfactory Cell Line for Regenerative Medicine. Bioengineering (Basel) 2020; 7:bioengineering7020037. [PMID: 32290611 PMCID: PMC7355638 DOI: 10.3390/bioengineering7020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100β expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100β expression were used in NG108-15 neuron co-cultures, those with the highest S100β expression resulted in longer and more numerous neurites (22.8 ± 2.4 μm neurite length/neuron for laminin) compared with the lowest S100β expression (17.9 ± 1.1 μm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.
Collapse
Affiliation(s)
- Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Pelin Durali
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
7
|
Niu PP, Xu YM. Letter by Niu and Xu Regarding Article, "S100B Serum Elevation Predicts In-Hospital Mortality After Brain Arteriovenous Malformation Rupture". Stroke 2019; 50:e257. [PMID: 31390966 DOI: 10.1161/strokeaha.119.025983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peng-Peng Niu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
8
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
9
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
10
|
Dai CX, Hu CC, Shang YS, Xie J. Role of Ginkgo biloba extract as an adjunctive treatment of elderly patients with depression and on the expression of serum S100B. Medicine (Baltimore) 2018; 97:e12421. [PMID: 30278520 PMCID: PMC6181482 DOI: 10.1097/md.0000000000012421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To explore the effect of ginkgo biloba extract (EGb) as an adjunctive treatment of elderly patients with depression and the effect on the expression of serum S100B. METHODS 136 elderly patients with depression were divided into EGb + citalopram (Cit) group and Cit group equally. Efficacy was evaluated by Hamilton Depression Rating Scale (HAMD). Wisconsin Card Classification Test (WCST) was used to evaluate cognitive function. Serum S100B expression was measured with ELISA. The relationship of S100B with HAMD, Hamilton Anxiety Scale (HAMA) score, and WCST results was evaluated subsequently. RESULTS The time of onset of efficacy was significantly shorter in EGb + Cit group. There were significant differences in HAMD and HAMA scores after treatment than before treatment between groups (all P < .05). After treatment, total number of WCST test, the number of continuous errors and non-persistent errors in both groups were less than those before treatment. The correct number and classifications number were increased than before treatment. In EGb + Cit group, correct numbers and classifications were increased, and the number of persistent errors was decreased. After treatment, S100B level was decreased, and S100B levels change in EGb + Cit group was greater than in Cit group. Serum S100B level was positively correlated with HAMD and HAMA scores before treatment and positively correlated with persistent errors number in WCST. CONCLUSION EGb, as an adjunctive treatment, can effectively improve depressive symptoms and reduce expression of serum S100B, which is a marker of brain injury, suggesting that EGb restores neurologic function during the treatment of depression in elderly patients and S100B participates in the therapeutic mechanism. EGb combined with depressive drugs plays synergistic role, and the time of onset of efficacy is faster than single antidepressants.
Collapse
|
11
|
Dou Y, Shen H, Feng D, Li H, Tian X, Zhang J, Wang Z, Chen G. Tumor necrosis factor receptor-associated factor 6 participates in early brain injury after subarachnoid hemorrhage in rats through inhibiting autophagy and promoting oxidative stress. J Neurochem 2017; 142:478-492. [PMID: 28543180 DOI: 10.1111/jnc.14075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/24/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a member of the TRAF family and an important multifunctional intracellular adaptin of the tumor necrosis factor superfamily and toll/IL-1 receptor (TIR) superfamily. TRAF6 has been studied in several central nervous system diseases, including ischemic stroke, traumatic brain injury, and neurodegenerative diseases, but its role in subarachnoid hemorrhage (SAH) has not been fully illustrated. This study was designed to explore changes of expression level and potential roles and mechanisms of TRAF6 in early brain injury (EBI) after SAH using a Sprague-Dawley rat model of SAH induced in 0.3 mL non-heparinized autologous arterial blood injected into the pre-chiasmatic cistern. First, compared with the sham group, we found that the expression levels of TRAF6 increased gradually and peaked at 24 h after SAH. Second, the results showed that application of TRAF6 over-expression plasmid and genetic silencing siRNA could increase or decrease expression of TRAF6, respectively, and severely exacerbate or relieve EBI after SAH, including neuronal death, brain edema, and blood-brain barrier injury. Meanwhile, the levels of autophagy and oxidative stress were reduced and increased separately. Finally, GFP-TRAF6-C70A, which is a TRAF6 mutant that lacks E3 ubiquitin ligase activity, was used to explore the mechanism of TRAF6 in SAH, and the results showed that EBI and oxidative stress were reduced, but the levels of autophagy were increased under this condition. Collectively, these results indicated that TRAF6 affected the degree of EBI after SAH by inhibiting autophagy and promoting oxidative stress.
Collapse
Affiliation(s)
- Yang Dou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaodi Tian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|