1
|
Bertrand S, Rich T, Nemanich S. Blinding of transcranial direct current stimulation is compromised in typically developing children compared to young adults. Eur J Neurosci 2024; 60:7086-7102. [PMID: 39572377 DOI: 10.1111/ejn.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/19/2024] [Accepted: 10/26/2024] [Indexed: 12/17/2024]
Abstract
Achieving successful blinding is a persistent challenge for clinical trials involving transcranial direct current stimulation. Studies involving populations with increased sensory sensitivity, such as children, could be at risk for increased bias from inadequate blinding due to unique sensation of stimulation relative to adults. The objectives of this study were 1) To examine differences in transcranial stimulation blinding between children and young adults and its relationship to sensory sensitivity. 2) To test the efficacy of an ActiSham protocol for participant blinding, compared to a traditional sham protocol. Typically developing right-handed children (N = 12, 5-14 yr) and young adults (N = 15, 15-25 yr) completed a single-session study to test transcranial stimulation blinding after three conditions counterbalanced across participants: Active, Sham and ActiSham. Stimulation was paired with a motor learning task to simulate a combinatory neurorehabilitation intervention. After each condition, participants reported if they received real or fake stimulation and their response confidence. To quantify sensory sensitivity, participants completed the Sensory Profile (second edition). Compared to a chance level, 1) children and young adults correctly identified Active stimulation, 2) children incorrectly identified Sham and ActiSham stimulation and 3) young adults identified Sham and ActiSham stimulation at chance-level. Blinding accuracy was not related to sensory sensitivity. Children report stimulation as real stimulation with higher confidence for almost all conditions, indicating unsuccessful blinding compared to young adults. Future studies should consider alternative sham protocols or methods to improve blinding in child participants.
Collapse
Affiliation(s)
- Sophia Bertrand
- Department of Occupational Therapy, Marquette University, Milwaukee, WI, USA
| | - Tonya Rich
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Family Medicine and Community Health, Rehabilitation Science Program, Minneapolis, MN, USA
| | - Samuel Nemanich
- Department of Occupational Therapy, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
2
|
da Silva TN, Ribeiro VF, Apaza MCC, Romana LG, de Moraes ÍAP, Dias ED, Roizenblatt SS, Martinez JP, Magalhães FH, Massa M, Ré AHN, de Araújo LV, da Silva-Magalhães TD, de Mello Monteiro CB. Effectiveness of Transcranial Direct Current Stimulation (tDCS) during a Virtual Reality Task in Women with Fibromyalgia-A Randomized Clinical Study. Brain Sci 2024; 14:928. [PMID: 39335423 PMCID: PMC11430377 DOI: 10.3390/brainsci14090928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Fibromyalgia (FM) is a chronic condition characterized by widespread musculoskeletal pain, fatigue, and impaired motor performance. This study aimed to investigate the effects of transcranial direct current stimulation (tDCS) during virtual reality (VR) tasks on the motor performance of women with FM. METHODS Participants were divided into two groups: Group A received active tDCS for 10 days followed by sham tDCS for 10 days, while Group B received the opposite sequence. Both groups performed VR tasks using MoveHero software (v. 2.4) during the tDCS sessions. Motor performance was assessed by the number of hits (movement with correct timing to reach the targets) and absolute (accuracy measure) and variable (precision measure) errors during VR tasks. Participants were 21 women, aged 30-50 years, and diagnosed with FM. RESULTS Group A, which received active tDCS first, presented significant improvements in motor performance (number of hits and absolute and variable errors). The benefits of active tDCS persisted into the sham phase, suggesting a lasting neuroplastic effect. CONCLUSIONS tDCS during VR tasks significantly improved motor performance in women with FM, particularly in complex, extensive movements. These findings indicate that tDCS enhances neuroplasticity, leading to sustained motor improvements, making it a promising therapeutic tool in FM rehabilitation.
Collapse
Affiliation(s)
- Thaís Nogueira da Silva
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - Vivian Finotti Ribeiro
- Graduate Program in Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Margot Carol Condori Apaza
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
| | - Lívia Gallerani Romana
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
| | - Íbis Ariana Peña de Moraes
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
- Department of Medicine, University of City of São Paulo (UNICID), São Paulo, Brazil
| | - Eduardo Dati Dias
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - Suely Steinschreiber Roizenblatt
- Graduate Program in Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Juliana Perez Martinez
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
| | - Fernando Henrique Magalhães
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
- Department of Physical Therapy, Faculty of Sciences and Technology (FCT/UNESP), State University of São Paulo, São Paulo, Brazil
| | - Marcelo Massa
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
| | - Alessandro Hervaldo Nicolai Ré
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
| | - Luciano Vieira de Araújo
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
| | - Talita Dias da Silva-Magalhães
- Graduate Program in Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Graduate Program in Bioengineering, University Brazil, São Paulo, Brazil
| | - Carlos Bandeira de Mello Monteiro
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
- Graduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo, Brazil
| |
Collapse
|
3
|
Roheger M, Riemann S, Brauer A, McGowan E, Grittner U, Flöel A, Meinzer M. Non-pharmacological interventions for improving language and communication in people with primary progressive aphasia. Cochrane Database Syst Rev 2024; 5:CD015067. [PMID: 38808659 PMCID: PMC11134511 DOI: 10.1002/14651858.cd015067.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Primary progressive aphasia (PPA) accounts for approximately 43% of frontotemporal dementias and is mainly characterised by a progressive impairment of speech and communication abilities. Three clinical variants have been identified: (a) non-fluent/agrammatic, (b) semantic, and (c) logopenic/phonological PPA variants. There is currently no curative treatment for PPA, and the disease progresses inexorably over time, with devastating effects on speech and communication ability, functional status, and quality of life. Several non-pharmacological interventions that may improve symptoms (e.g. different forms of language training and non-invasive brain stimulation) have been investigated in people with PPA. OBJECTIVES To assess the effects of non-pharmacological interventions for people with PPA on word retrieval (our primary outcome), global language functions, cognition, quality of life, and adverse events. SEARCH METHODS We searched the Cochrane Dementia and Cognitive Improvement Group's trial register, MEDLINE (Ovid SP), Embase (Ovid SP), four other databases and two other trial registers. The latest searches were run on 26 January 2024. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating the effects of non-pharmacological interventions in people with PPA. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS There were insufficient data available to conduct the network meta-analyses that we had originally planned (due to trial data being insufficiently reported or not reported at all, as well as the heterogeneous content of the included interventions). Therefore, we provide a descriptive summary of the included studies and results. We included 10 studies, with a total of 132 participants, evaluating non-pharmacological interventions. These were: transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) as stand-alone treatments (used by two and one studies, respectively); tDCS combined with semantic and phonological word-retrieval training (five studies); tDCS combined with semantic word-retrieval training (one study); and tDCS combined with phonological word-retrieval training (one study). Results for our primary outcome of word retrieval were mixed. For the two studies that investigated the effects of tDCS as stand-alone treatment compared to placebo ("sham") tDCS, we rated the results as having very low-certainty evidence. One study found a significant beneficial effect on word retrieval after active tDCS; one study did not report any significant effects in favour of the active tDCS group. Five studies investigated tDCS administered to the dorsolateral prefrontal cortex, inferior frontal cortex, left frontotemporal region, or the temporoparietal cortex, combined with semantic and phonological word-retrieval training. The most consistent finding was enhancement of word-retrieval ability for trained items immediately after the intervention, when behavioural training was combined with active tDCS compared to behavioural training plus sham tDCS. We found mixed effects for untrained items and maintenance of treatment effects during follow-up assessments. We rated the certainty of the evidence as very low in all studies. One study investigated tDCS combined with semantic word-retrieval training. Training was provided across 15 sessions with a frequency of three to five sessions per week, depending on the personal preferences of the participants. tDCS targeted the left frontotemporal region. The study included three participants: two received 1 mA stimulation and one received 2 mA stimulation. The study showed mixed results. We rated it as very low-certainty evidence. One study investigated tDCS combined with phonological word-retrieval training. Training was again provided across 15 sessions over a period of three weeks. tDCS targeted the left inferior frontal gyrus. This study showed a significantly more pronounced improvement for trained and untrained words in favour of the group that had received active tDCS, but we rated the certainty of the evidence as very low. One study compared active rTMS applied to an individually determined target site to active rTMS applied to a control site (vertex) for effects on participants' word retrieval. This study demonstrated better word retrieval for active rTMS administered to individually determined target brain regions than in the control intervention, but we rated the results as having a very low certainty of evidence. Four studies assessed overall language ability, three studies assessed cognition, five studies assessed potential adverse effects of brain stimulation, and one study investigated quality of life. AUTHORS' CONCLUSIONS There is currently no high-certainty evidence to inform clinical decision-making regarding non-pharmacological treatment selection for people with PPA. Preliminary evidence suggests that the combination of active tDCS with specific language therapy may improve impaired word retrieval for specifically trained items beyond the effects of behavioural treatment alone. However, more research is needed, including high-quality RCTs with detailed descriptions of participants and methods, and consideration of outcomes such as quality of life, depressive symptoms, and overall cognitive functioning. Moreover, studies assessing optimal treatments (i.e. behavioural interventions, brain stimulation interventions, and their combinations) for individual patients and PPA subtypes are needed. We were not able to conduct the planned (network) meta-analyses due to missing data that could not be obtained from most of the authors, a general lack of RCTs in the field, and heterogeneous interventions in eligible trials. Journals should implement a mandatory data-sharing requirement to assure transparency and accessibility of data from clinical trials.
Collapse
Affiliation(s)
- Mandy Roheger
- Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Steffen Riemann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Brauer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Ellen McGowan
- Speech and Language Therapy, Older People's Mental Health, Stockport, Pennine Care NHS Foundation Trust, Pennine Care NHS Foundation Trust, Stockport, UK
| | - Ulrike Grittner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Willmot N, Leow LA, Filmer HL, Dux PE. Exploring the intra-individual reliability of tDCS: A registered report. Cortex 2024; 173:61-79. [PMID: 38382128 DOI: 10.1016/j.cortex.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has become an important tool for the study of in-vivo brain function due to its modulatory effects. Over the past two decades, interest in the influence of tDCS on behaviour has increased markedly, resulting in a large body of literature spanning multiple domains. However, the effect of tDCS on human performance often varies, bringing into question the reliability of this approach. While reviews and meta-analyses highlight the contributions of methodological inconsistencies and individual differences, no published studies have directly tested the intra-individual reliability of tDCS effects on behaviour. Here, we conducted a large scale, double-blinded, sham-controlled registered report to assess the reliability of two single-session low-dose tDCS montages, previously found to impact response selection and motor learning operations, across two separate time periods. Our planned analysis found no evidence for either protocol being effective nor reliable. Post-hoc explorative analyses found evidence that tDCS influenced motor learning, but not response selection learning. In addition, the reliability of motor learning performance across trials was shown to be disrupted by tDCS. These findings are amongst the first to shed light specifically on the intra-individual reliability of tDCS effects on behaviour and provide valuable information to the field.
Collapse
Affiliation(s)
- Nicholas Willmot
- Department of Defence, Edinburgh, SA, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, Australia.
| | - Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Lenner Á, Papp ZL, Szabó C, Komlósi I. Calming Hungarian Grey Cattle in Headlocks Using Processed Nasal Vocalization of a Mother Cow. Animals (Basel) 2023; 14:135. [PMID: 38200866 PMCID: PMC10778485 DOI: 10.3390/ani14010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Sound analysis is an important field of research for improving precision livestock farming systems. If the information carried by livestock sounds is interpreted correctly, it could be used to improve management and welfare assessment in this field. Therefore, we hypothesized that the nasal vocalization of a mother cow could have a calming effect on conspecifics. The nasal vocalization in our study was recorded from a mother cow (not part of the test herd) while it was licking its day-old calf. The raw sound was analyzed, cleaned from noises, and the most representative vocalization was lengthened to two minutes. Thirty cows having calves were randomly selected from eighty Hungarian grey cattle cows. Two test days were selected, one week apart; the weather circumstances in both days were similar. The herd was collected in a paddock, and the test site (a restraining crate with a headlock) was 21 m away from them. The cows from the herd were gently moved to the restraining crate, and, after the installation of the headlock, Polar® heart rate monitors were fixed on the animals. The recording of the RR intervals was carried out for two minutes. On day one of the test, the processed nasal sound was played to every second cow during the heart rate monitoring. When the sound ended, the heart rate monitor was removed. On test day two, the sound and no sound treatments were switched among the participating cows. At the end of the measurement, the headlock was opened, letting the animals out voluntarily, and a flight test was performed along a 5 m distance. The time needed to pass the 5 m length was measured with a stopwatch and divided by the distance. The RR intervals were analyzed with the Kubios HRV Standard (ver. 3.5.0) software. The following data were recorded for the entire measurement: average and maximum heart rate; SD1 and SD2; pNN50; VLF, LF, and HF. The quasi-periodic signal detected in the sound analyses can hardly be heard, even when it is enhanced to the maximum. This can be considered a vibration probably caused by the basis of articulation, such as a vibration of the tongue, for example. The SD2/SD1 ratio (0.97 vs. 1.07 for the animals having no sound and sound played, respectively, p = 0.0110) and the flight speed (0.92 vs. 1.08 s/m for the animals having no sound and sound played, respectively, p = 0.0409) indicate that the sound treatment had a calming effect on the restrained cows. The day of the test did not influence any of the measured parameters; therefore, no effect of the routine was observed. The yes-no sequence of the sound treatment significantly reduced the pNN50 and flight speed values, suggesting a somewhat more positive association with the headlock and the effectiveness of the processed nasal sound. In conclusion, we have demonstrated that, by means of sound analyses, not only information about individuals and the herd can be gathered but that, with proper processing, the sound obtained can be used to improve animal welfare.
Collapse
Affiliation(s)
- Ádám Lenner
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Lajos Papp
- Department of Computer Science, Faculty of Informatics, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Komlósi
- Department of Animal Husbandry, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
6
|
Cruz Gutierrez NA, Melo OO, Martinez CA. Semiparametric generalized estimating equations for repeated measurements in cross-over designs. Stat Methods Med Res 2023:9622802231158736. [PMID: 36919447 DOI: 10.1177/09622802231158736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A model for cross-over designs with repeated measures within each period was developed. It was obtained using an extension of generalized estimating equations that includes a parametric component to model treatment effects and a non-parametric component to model time and carry-over effects; the estimation approach for the non-parametric component is based on splines. A simulation study was carried out to explore the model properties. Thus, when there is a carry-over effect or a functional temporal effect, the proposed model presents better results than the standard models. Among the theoretical properties, the solution is found to be analogous to weighted least squares. Therefore, model diagnostics can be made by adapting the results from a multiple regression. The proposed methodology was implemented in the data sets of the cross-over experiments that motivated the approach of this work: systolic blood pressure and insulin in rabbits.
Collapse
Affiliation(s)
| | - Oscar Orlando Melo
- Departamento de Estadística, Facultad de Ciencias, 28021Universidad Nacional de Colombia, Mosquera, Colombia
| | - Carlos Alberto Martinez
- Corporaciòn Colombiana de Investigaciòn Agropecuaria - AGROSAVIA, Sede Central, Mosquera,Colombia
| |
Collapse
|
7
|
Cruz NA, Melo OO, Martinez CA. A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures. Stat Pap (Berl) 2023. [DOI: 10.1007/s00362-022-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Transcranial direct current stimulation influences repetitive bimanual force control and interlimb force coordination. Exp Brain Res 2023; 241:313-323. [PMID: 36512062 DOI: 10.1007/s00221-022-06526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the potential effect of bilateral transcranial direct current stimulation (tDCS) on repetitive bimanual force control and force coordination in healthy young adults. In this sham-controlled crossover study, 18 right-handed young adults were enrolled. Repetitive bimanual handgrip force control trials were performed by the participants at 40% of maximum voluntary contraction until task failure. We randomly provided bilateral active and sham tDCS to the primary motor cortex (M1) of each participant before conducting the repetitive bimanual force control task. We quantified the number of successful trials to assess the ability to maintain bimanual force control across multiple trials. Moreover, we estimated bimanual force control and force coordination by quantifying force accuracy, variability, regularity, and correlation coefficient in maximal and adjusted successful trials. Force asymmetry was calculated to examine potential changes in motor dependency on each hand during the task. Bilateral tDCS significantly increased the number of successful trials compared with sham tDCS. The adjusted successful trial revealed that participants who received bilateral tDCS maintained better bimanual force control and coordination, as indicated by decreased force variability and regularity as well as more negative correlation coefficient values in comparison with sham condition. Moreover, participants who received bilateral tDCS produced more force from the dominant hand than from the nondominant hand in both maximal and adjusted successful trials. These findings suggest that bilateral tDCS on M1 successfully maintains bimanual force control with better force coordination by modulating motor dependency.
Collapse
|
9
|
Leffa DT, Grevet EH, Bau CHD, Schneider M, Ferrazza CP, da Silva RF, Miranda MS, Picon F, Teche SP, Sanches P, Pereira D, Rubia K, Brunoni AR, Camprodon JA, Caumo W, Rohde LA. Transcranial Direct Current Stimulation vs Sham for the Treatment of Inattention in Adults With Attention-Deficit/Hyperactivity Disorder: The TUNED Randomized Clinical Trial. JAMA Psychiatry 2022; 79:847-856. [PMID: 35921102 PMCID: PMC9350846 DOI: 10.1001/jamapsychiatry.2022.2055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Transcranial direct current stimulation (tDCS) may improve symptoms of inattention in adults with attention-deficit/hyperactivity disorder (ADHD). However, previous trials are characterized by small sample sizes, heterogeneous methodologies, and short treatment periods using clinic-based tDCS. OBJECTIVE To determine the efficacy and safety of home-based tDCS in treating inattention symptoms in adult patients with ADHD. DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, parallel, sham-controlled clinical trial (tDCS for the Treatment of Inattention Symptoms in Adult Patients With ADHD [TUNED]), conducted from July 2019 through July 2021 in a single-center outpatient academic setting. Of 277 potential participants screened by phone, 150 were assessed for eligibility on site, and 64 were included. Participants were adults with ADHD, inattentive or combined subtype. Exclusion criteria included current stimulant drug treatment, current moderate to severe symptoms of depression or anxiety, diagnosis of bipolar disorder with a manic or depressive episode in the last year, diagnosis of schizophrenia or another psychotic disorder, and diagnosis of autism spectrum disorder; 55 of participants completed follow-up after 4 weeks. INTERVENTIONS Thirty-minute daily sessions of home-based tDCS for 4 weeks, 2 mA anodal-right and cathodal-left prefrontal stimulation with 35-cm2 carbon electrodes. MAIN OUTCOMES AND MEASURES Inattentive scores in the clinician-administered version of the Adult ADHD Self-report Scale version 1.1 (CASRS-I). RESULTS Included in this trial were 64 participants with ADHD (31 [48%] inattentive presentation and 33 [52%] combined presentation), with a mean (SD) age of 38.3 (9.6) years. Thirty participants (47%) were women and 34 (53%) were men. Fifty-five finished the trial. At week 4, the mean (SD) inattention score, as measured with CASRS-I, was 18.88 (5.79) in the active tDCS group and 23.63 (3.97) in the sham tDCS group. Linear mixed-effects models revealed a statistically significant treatment by time interaction for CASRS-I (βinteraction = -3.18; 95% CI, -4.60 to -1.75; P < .001), showing decreased symptoms of inattention in the active tDCS group over the 3 assessments compared to the sham tDCS group. Mild adverse events were more frequent in the active tDCS group, particularly skin redness, headache, and scalp burn. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, daily treatment with a home-based tDCS device over 4 weeks improved attention in adult patients with ADHD who were not taking stimulant medication. Home-based tDCS could be a nonpharmacological alternative for patients with ADHD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04003740.
Collapse
Affiliation(s)
- Douglas Teixeira Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maitê Schneider
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Prietto Ferrazza
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Francieli da Silva
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Silva Miranda
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Picon
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania Pigatto Teche
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Sanches
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Danton Pereira
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - André Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Joan A. Camprodon
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wolnei Caumo
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Department of Surgery, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| |
Collapse
|
10
|
High Definition tDCS Effect on Postural Control in Healthy Individuals: Entropy Analysis of a Crossover Clinical Trial. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objective: Converging evidence supporting an effect of transcranial direct current stimulation (tDCS) on postural control and human verticality perception highlights this strategy as promising for post-stroke rehabilitation. We have previously demonstrated polarity-dependent effects of high-definition tDCS (HD-tDCS) on weight-bearing asymmetry. However, there is no investigation regarding the time-course of effects on postural control induced by HD-tDCS protocols. Thus, we performed a nonlinear time series analysis focusing on the entropy of the ground reaction force as a secondary investigation of our randomized, double-blind, placebo-controlled, crossover clinical trial. Materials and Methods: Twenty healthy right-handed young adults received the following conditions (random order, separate days); anode center HD-tDCS, cathode center HD-tDCS or sham HD-tDCS at 1, 2, and 3 mA over the right temporo-parietal junction (TPJ). Using summarized time series of transfer entropy, we evaluated the exchanging information (causal direction) between both force plates and compared the dose-response across the healthy subjects with a Generalized Linear Hierarchical/Mixed Model (GLMM). Results: We found significant variation during the dynamic information flow (p < 0.001) among the dominant bodyside (and across time). A greater force transfer entropy was observed from the right to the left side during the cathode-center HD-tDCS up to 2 mA, with a causal relationship in the information flow (equilibrium force transfer) from right to left that decreased over time. Conclusions: HD-tDCS intervention induced a dynamic influence over time on postural control entropy. Right hemisphere TPJ stimulation using cathode-center HD-tDCS can induce an asymmetry of body weight distribution towards the ipsilateral side of stimulation. These results support the clinical potential of HD-tDCS for post-stroke rehabilitation.
Collapse
|
11
|
da Silva TD, Fontes AMGG, de Oliveira-Furlan BS, Roque TT, Lima AII, de Souza BMM, Alberissi CADO, Silveira AC, de Moraes ÍAP, Collett J, Silva RP, Airoldi MJ, Ribeiro-Papa DC, Dawes H, Monteiro CBDM. Effect of Combined Therapy of Virtual Reality and Transcranial Direct Current Stimulation in Children and Adolescents With Cerebral Palsy: A Study Protocol for a Triple-Blinded Randomized Controlled Crossover Trial. Front Neurol 2020; 11:953. [PMID: 32982950 PMCID: PMC7492207 DOI: 10.3389/fneur.2020.00953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) and therapy-based virtual reality (VR) have been investigated separately. They have shown promise as efficient and engaging new tools in the neurological rehabilitation of individuals with cerebral palsy (CP). However, the recent literature encourages investigation of the combination of therapy tools in order to potentiate clinic effects and its mechanisms. Methods: A triple-blinded randomised sham-controlled crossover trial will be performed. Thirty-six individuals with gross motor function of levels I to IV (aged 4–14 years old) will be recruited. Individuals will be randomly assigned to Group A (active first) or S (sham first): Group A will start with ten sessions of active tDSC combined with VR tasks. After a 1-month washout, this group will be reallocated to another ten sessions with sham tDCS combined with VR tasks. In contrast, Group S will carry out the opposite protocol, starting with sham tDCS. For the active tDCS the protocol will use low frequency tDCS [intensity of 1 milliampere (mA)] over the primary cortex (M1) area on the dominant side of the brain. Clinical evaluations (reaction times and coincident timing through VR, functional scales: Abilhand-Kids, ACTIVLIM-CP, Paediatric Evaluation of Disability Inventory-PEDI- and heart rate variability-HRV) will be performed at baseline, during, and after active and sham tDCS. Conclusion: tDCS has produced positive results in treating individuals with CP; thus, its combination with new technologies shows promise as a potential mechanism for improving neurological functioning. The results of this study may provide new insights into motor rehabilitation, thereby contributing to the better use of combined tDCS and VR in people with CP. Trial Registration:ClinicalTrials.gov, NCT04044677. Registered on 05 August 2019.
Collapse
Affiliation(s)
- Talita Dias da Silva
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.,Departamento de Medicina (Cardiologia), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil.,Faculdade de Medicina, Universidade Cidade de São Paulo (UNICID), São Paulo, Brazil
| | | | - Barbara Soares de Oliveira-Furlan
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Tatiane Tedeschi Roque
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Ana Izabel Izidório Lima
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Bruna Mayara Magalhães de Souza
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Camila Aparecida de Oliveira Alberissi
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Ana Clara Silveira
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Íbis Ariana Peña de Moraes
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.,Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Johnny Collett
- Institute of Nursing and Allied Health Research, Oxford Brookes University, Oxford, United Kingdom.,Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Roger Pereira Silva
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Marina Junqueira Airoldi
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Denise Cardoso Ribeiro-Papa
- Departamento de Medicina (Cardiologia), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| | - Helen Dawes
- Institute of Nursing and Allied Health Research, Oxford Brookes University, Oxford, United Kingdom.,Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Carlos Bandeira de Mello Monteiro
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.,Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER), Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo, Brazil
| |
Collapse
|
12
|
Cooner F, Gamalo-Siebers M, Xia A, Gao A, Ruan S, Jiang T, Thompson L. Use of Alternative Designs and Data Sources for Pediatric Trials. Stat Biopharm Res 2019. [DOI: 10.1080/19466315.2019.1671217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Amy Xia
- Amgen Inc., Thousand Oaks, CA
| | | | | | | | - Laura Thompson
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| |
Collapse
|