1
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
2
|
Khaledi M, Sameni F, Gholipour A, Shahrjerdi S, Golmohammadi R, Gouvarchin Ghaleh HE, Poureslamfar B, Hemmati J, Mobarezpour N, Milasi YE, Rad F, Mehboodi M, Owlia P. Potential role of gut microbiota in major depressive disorder: A review. Heliyon 2024; 10:e33157. [PMID: 39027446 PMCID: PMC11254604 DOI: 10.1016/j.heliyon.2024.e33157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Interactions between the gut microbiota and host immunity are sophisticated, dynamic, and host-dependent. Scientists have recently conducted research showing that disturbances in the gut bacterial community can lead to a decrease in some metabolites and, consequently, to behaviors such as depression. Exposure to stressors dropped the relative abundance of bacteria in the genus Bacteroides while soaring the relative abundance of bacteria in the genus Clostridium, Coprococcus, Dialister, and Oscillibacter, which were also reduced in people with depression. Microbiota and innate immunity are in a bilateral relationship. The gut microbiota has been shown to induce the synthesis of antimicrobial proteins such as catalysidins, type C lectins, and defensins. Probiotic bacteria can modulate depressive behavior through GABA signaling. The gut microbiome produces essential metabolites such as neurotransmitters, tryptophan metabolites, and short-chain fatty acids (SCFAs) that can act on the CNS. In the case of dysbiosis, due to mucin changes, the ratio of intestinal-derived molecules may change and contribute to depression. Psychotropics, including Bifidobacterium longum NCC3001, Clostridium butyricum CBM588, and Lactobacillus acidophilus, have mental health benefits, and can have a positive effect on the host-brain relationship, and have antidepressant effects. This article reviews current studies on the association between gut microbiota dysbiosis and depression. Comprehensively, these findings could potentially lead to novel approaches to improving depressive symptoms via gut microbiota alterations, including probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Abolfazl Gholipour
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahnaz Shahrjerdi
- Department of Physiology and Sports Pathology, Faculty of Sport Sciences, Arak University, Arak, Iran
| | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Jaber Hemmati
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Niloofar Mobarezpour
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rad
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahtab Mehboodi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
4
|
Li H, Dang Y, Yan Y. Serum interleukin-17 A and homocysteine levels in children with autism. BMC Neurosci 2024; 25:17. [PMID: 38475688 DOI: 10.1186/s12868-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that typically emerges early in childhood. This study aimed to explore the potential link between serum levels of vitamin B12 and homocysteine (Hcy) and the severity of ASD symptoms in children. METHODS In this study, 50 children diagnosed with ASD comprised the observation group, while 50 healthy children constituted the control group. Serum levels of IL-17 A, Hcy, folate, and vitamin B12 were compared between the study group and control group, as well as among children with different degrees of ASD severity. The correlation between the Childhood Autism Rating Scale (CARS) score and serum levels of IL-17 A, Hcy, folate, and vitamin B12 was examined. Additionally, the relationship between serum IL-17 A and Hcy levels and their association with the severity ASD were explored. RESULTS Compared to the control group, the observation group demonstrated elevated serum Hcy and IL-17 A levels alongside decreased folate and vitamin B12 levels. Individuals with severe ASD exhibited higher Hcy and IL-17 A levels but lower folate and vitamin B12 levels compared to those with mild to moderate ASD. The CARS score showed negative correlations with serum folate and vitamin B12 levels and positive correlations with serum IL-17 A and Hcy levels in ASD patients. Additionally, serum Hcy and IL-17 A levels were correlated with ASD severity. CONCLUSION Children diagnosed with ASD presented with reduced serum vitamin B12 levels and increased levels of Hcy, potentially contributing to the onset and severity of ASD.
Collapse
Affiliation(s)
- Hui Li
- Department of Child Health Care, Northwest Women's and Children's Hospital, 710061, Xi'an, China.
| | - Yunhao Dang
- Xi'an Mental Health Center, Department of Children and adolescents Psychology, 710061, Xi'an, China
| | - Ying Yan
- Department of Child Health Care, Xi'an Central Hospital, 710004, Xi'an, China
| |
Collapse
|
5
|
Khoshnan A. Gut Microbiota as a Modifier of Huntington's Disease Pathogenesis. J Huntingtons Dis 2024; 13:133-147. [PMID: 38728199 PMCID: PMC11307070 DOI: 10.3233/jhd-240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Huntingtin (HTT) protein is expressed in most cell lineages, and the toxicity of mutant HTT in multiple organs may contribute to the neurological and psychiatric symptoms observed in Huntington's disease (HD). The proteostasis and neurotoxicity of mutant HTT are influenced by the intracellular milieu and responses to environmental signals. Recent research has highlighted a prominent role of gut microbiota in brain and immune system development, aging, and the progression of neurological disorders. Several studies suggest that mutant HTT might disrupt the homeostasis of gut microbiota (known as dysbiosis) and impact the pathogenesis of HD. Dysbiosis has been observed in HD patients, and in animal models of the disease it coincides with mutant HTT aggregation, abnormal behaviors, and reduced lifespan. This review article aims to highlight the potential toxicity of mutant HTT in organs and pathways within the microbiota-gut-immune-central nervous system (CNS) axis. Understanding the functions of Wild-Type (WT) HTT and the toxicity of mutant HTT in these organs and the associated networks may elucidate novel pathogenic pathways, identify biomarkers and peripheral therapeutic targets for HD.
Collapse
Affiliation(s)
- Ali Khoshnan
- Keck School of Medicine, Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Meng J, Liu HC, Guo YY, Wang F, Pi DJ, Yu QZ. Discovery of a triphenylamine-benzofuran derivative as fluorescent probe for hydrogen polysulfide in tea samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122191. [PMID: 36463623 DOI: 10.1016/j.saa.2022.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In this work, a novel triphenylamine-benzofuran derived fluorescent probe, TBF-SS, was developed for detecting hydrogen polysulfide in tea samples and intracellular imaging. TBF-SS showed the practical advantages including high sensitivity (LOD = 0.01 μM), high selectivity, rapid response (within 15 min), and steadiness in various environmental conditions. The detecting system was steady within pH range of 6.0-11.0 and temperature range of 20-55 °C. The probe TBF-SS could guarantee the stable detection of H2Sn for 7 d in storage of either solid or solution. In particular, in the application of various tea samples with different brewing times and testing temperatures, the recovery percentages varied in the range of 95.22 % to 105.0 %. Therefore accurate monitoring of H2Sn could be achieved by using the probe TBF-SS. In addition, TBF-SS could monitor the exogenous level, the β-lapachone-induced generation and the tea-sample-treated introduction of H2Sn in living MCF-7 cells. This work might inspire the improvement of the serviceability of fluorescent implements.
Collapse
Affiliation(s)
- Juan Meng
- College of Preparatory Education, Guangxi Minzu University, Nanning 530006, PR China
| | - Hong-Cun Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China.
| | - Yang-Yang Guo
- Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, PR China
| | - Fang Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China
| | - Du-Juan Pi
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China
| | - Qian-Zhou Yu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China
| |
Collapse
|