1
|
Gooijers J, Pauwels L, Hehl M, Seer C, Cuypers K, Swinnen SP. Aging, brain plasticity, and motor learning. Ageing Res Rev 2024; 102:102569. [PMID: 39486523 DOI: 10.1016/j.arr.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation). Extensive research has demonstrated that motor skill acquisition in young adults is accompanied by significant neuroplastic changes, including alterations in brain structure (gray and white matter), function (i.e., activity and connectivity), and neurochemistry (i.e., levels of neurotransmitters). In the aging population, motor performance typically declines, characterized by slower and less accurate movements. However, despite these age-related changes, older adults maintain the capacity for skill improvement through training. In this review, we explore the extent to which the aging brain retains the ability to adapt in response to motor learning, specifically whether skill acquisition is accompanied by neural changes. Furthermore, we discuss the associations between inter-individual variability in brain structure and function and the potential for future learning in older adults. Finally, we consider the use of non-invasive brain stimulation techniques aimed at optimizing motor learning in this population. Our review provides insights into the neurobiological underpinnings of motor learning in older adults and emphasizes strategies to enhance their motor skill acquisition.
Collapse
Affiliation(s)
- Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Caroline Seer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Pagnotta MF, Riddle J, D'Esposito M. Multimodal neuroimaging of hierarchical cognitive control. Biol Psychol 2024; 193:108896. [PMID: 39488242 DOI: 10.1016/j.biopsycho.2024.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cognitive control enables us to translate our knowledge into actions, allowing us to flexibly adjust our behavior, according to environmental contexts, our internal goals, and future plans. Multimodal neuroimaging and neurostimulation techniques have proven essential for advancing our understanding of how cognitive control emerges from the coordination of distributed neuronal activities in the brain. In this review, we examine the literature on multimodal studies of cognitive control. We explore how these studies provide converging evidence for a novel, multiplexed model of cognitive control, in which neural oscillations support different levels of control processing along a functionally hierarchical organization of distinct frontoparietal networks.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Justin Riddle
- Department of Psychology, Florida State University, FL, USA; Program in Neuroscience, Florida State University, FL, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Heemels RE, Ademi S, Hehl M. Test-retest reliability of intrahemispheric dorsal premotor and primary motor cortex dual-site TMS connectivity measures. Clin Neurophysiol 2024; 165:64-75. [PMID: 38959537 DOI: 10.1016/j.clinph.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Investigating the optimal interstimulus interval (ISI) and the 24-hour test-retest reliability for intrahemispheric dorsal premotor cortex (PMd) - primary motor cortex (M1) connectivity using dual-site transcranial magnetic stimulation (dsTMS). METHODS In 21 right-handed adults, left intrahemispheric PMd-M1 connectivity has been investigated with a stacked-coil dsTMS setup (conditioning stimulus: 75% of resting motor threshold; test stimulus: eliciting MEPs of 1-1.5 mV) at ISIs of 3, 5-8, and 10 ms. Additionally, M1-M1 short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were investigated to assess comparability to standard paired-pulse setups. RESULTS Conditioning PMd led to significant inhibition of M1 output at ISIs of 3 and 5 ms, whereas 10 ms resulted in facilitation (all, p < 0.001), with a fair test-retest reliability for 3 (ICC: 0.47) and 6 ms (ICC: 0.44) ISIs. Replication of SICI (p < 0.001) and ICF (p = 0.017) was successful, with excellent test-retest reliability for SICI (ICC: 0.81). CONCLUSION This dsTMS setup can probe the inhibitory and facilitatory PMd-M1 connections, as well as reliably replicate SICI and ICF paradigms. SIGNIFICANCE The stacked-coil dsTMS setup for investigating intrahemispheric PMd-M1 connectivity offers promising possibilities to better understand motor control.
Collapse
Affiliation(s)
- Robin E Heemels
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Sian Ademi
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Melina Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
4
|
Bundt C, Huster RJ. Corticospinal excitability reductions during action preparation and action stopping in humans: Different sides of the same inhibitory coin? Neuropsychologia 2024; 195:108799. [PMID: 38218313 DOI: 10.1016/j.neuropsychologia.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Motor functions and cognitive processes are closely associated with each other. In humans, this linkage is reflected in motor system state changes both when an action must be prepared and stopped. Single-pulse transcranial magnetic stimulation showed that both action preparation and action stopping are accompanied by a reduction of corticospinal excitability, referred to as preparatory and response inhibition, respectively. While previous efforts have been made to describe both phenomena extensively, an updated and comprehensive comparison of the two phenomena is lacking. To ameliorate such deficit, this review focuses on the role and interpretation of single-coil (single-pulse and paired-pulse) and dual-coil TMS outcome measures during action preparation and action stopping in humans. To that effect, it aims to identify commonalities and differences, detailing how TMS-based outcome measures are affected by states, traits, and psychopathologies in both processes. Eventually, findings will be compared, and open questions will be addressed to aid future research.
Collapse
Affiliation(s)
- Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Hehl M, Van Malderen S, Geraerts M, Meesen RLJ, Rothwell JC, Swinnen SP, Cuypers K. Probing intrahemispheric interactions with a novel dual-site TMS setup. Clin Neurophysiol 2024; 158:180-195. [PMID: 38232610 DOI: 10.1016/j.clinph.2023.12.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Using dual-site transcranial magnetic stimulation (dsTMS), the effective connectivity between the primary motor cortex (M1) and adjacent brain areas such as the dorsal premotor cortex (PMd) can be investigated. However, stimulating two brain regions in close proximity (e.g., ±2.3 cm for intrahemispheric PMd-M1) is subject to considerable spatial restrictions that potentially can be overcome by combining two standard figure-of-eight coils in a novel dsTMS setup. METHODS After a technical evaluation of its induced electric fields, the dsTMS setup was tested in vivo (n = 23) by applying a short-interval intracortical inhibition (SICI) protocol. Additionally, the intrahemispheric PMd-M1 interaction was probed. E-field modelling was performed using SimNIBS. RESULTS The technical evaluation yielded no major alterations of the induced electric fields due to coil overlap. In vivo, the setup reliably elicited SICI. Investigating intrahemispheric PMd-M1 interactions was feasible (inter-stimulus interval 6 ms), resulting in modulation of M1 output. CONCLUSIONS The presented dsTMS setup provides a novel way to stimulate two adjacent brain regions with fewer technical and spatial limitations than previous attempts. SIGNIFICANCE This dsTMS setup enables more accurate and repeatable targeting of brain regions in close proximity and can facilitate innovation in the field of effective connectivity.
Collapse
Affiliation(s)
- Melina Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Marc Geraerts
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Raf L J Meesen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
6
|
Goldenkoff ER, Deluisi JA, Destiny DP, Lee TG, Michon KJ, Brissenden JA, Taylor SF, Polk TA, Vesia M. The behavioral and neural effects of parietal theta burst stimulation on the grasp network are stronger during a grasping task than at rest. Front Neurosci 2023; 17:1198222. [PMID: 37954875 PMCID: PMC10637360 DOI: 10.3389/fnins.2023.1198222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (TMS) is widely used in neuroscience and clinical settings to modulate human cortical activity. The effects of TMS on neural activity depend on the excitability of specific neural populations at the time of stimulation. Accordingly, the brain state at the time of stimulation may influence the persistent effects of repetitive TMS on distal brain activity and associated behaviors. We applied intermittent theta burst stimulation (iTBS) to a region in the posterior parietal cortex (PPC) associated with grasp control to evaluate the interaction between stimulation and brain state. Across two experiments, we demonstrate the immediate responses of motor cortex activity and motor performance to state-dependent parietal stimulation. We randomly assigned 72 healthy adult participants to one of three TMS intervention groups, followed by electrophysiological measures with TMS and behavioral measures. Participants in the first group received iTBS to PPC while performing a grasping task concurrently. Participants in the second group received iTBS to PPC while in a task-free, resting state. A third group of participants received iTBS to a parietal region outside the cortical grasping network while performing a grasping task concurrently. We compared changes in motor cortical excitability and motor performance in the three stimulation groups within an hour of each intervention. We found that parietal stimulation during a behavioral manipulation that activates the cortical grasping network increased downstream motor cortical excitability and improved motor performance relative to stimulation during rest. We conclude that constraining the brain state with a behavioral task during brain stimulation has the potential to optimize plasticity induction in cortical circuit mechanisms that mediate movement processes.
Collapse
Affiliation(s)
| | - Joseph A. Deluisi
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Danielle P. Destiny
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Taraz G. Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine J. Michon
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - James A. Brissenden
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Thad A. Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
8
|
Magalhães Ferreira S, Cuypers K, Hehl M. Studying lateralization changes in the aging brain. Aging (Albany NY) 2023; 15:884-886. [PMID: 36812471 PMCID: PMC10008501 DOI: 10.18632/aging.204550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Sara Magalhães Ferreira
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|