1
|
Potential Roles of Sestrin2 in Alzheimer's Disease: Antioxidation, Autophagy Promotion, and Beyond. Biomedicines 2021; 9:biomedicines9101308. [PMID: 34680426 PMCID: PMC8533411 DOI: 10.3390/biomedicines9101308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.
Collapse
|
2
|
A novel rhamnoside derivative PL402 up-regulates matrix metalloproteinase 3/9 to promote Aβ degradation and alleviates Alzheimer's-like pathology. Aging (Albany NY) 2020; 12:481-501. [PMID: 31901901 PMCID: PMC6977668 DOI: 10.18632/aging.102637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The accumulation of amyloid-β (Aβ), considered as the major cause of Alzheimer’s disease (AD) pathogenesis, relays on the rate of its biosynthesis and degradation. Aβ degradation is a common overture to late-onset AD and targeting the impairment of Aβ degradation has gained attention in the recent years. In this study, we demonstrated a rhamnoside derivative PL402 suppressed Aβ level in cell models without changing the expression or activity of Aβ generation-related secretases. However, the levels of matrix metalloproteinase (MMP) 3 and 9, belonging to amyloid-degrading enzymes (ADEs), were up-regulated by PL402. The inhibition or the knockdown of these two enzymes abolished the effect of PL402, indicating that PL402 may reduce Aβ via MMP3/9-mediated Aβ degradation. Notably, administration of PL402 significantly attenuated Aβ pathology and cognitive defects in APP/PS1 transgenic mice with the consistent promotion of ADEs expression. Thus, our study suggests that targeting Aβ degradation could be an effective strategy against AD and the rhamnoside derivatives may have therapeutic effects.
Collapse
|
3
|
Decock M, El Haylani L, Stanga S, Dewachter I, Octave JN, Smith SO, Constantinescu SN, Kienlen-Campard P. Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio 2015; 5:763-73. [PMID: 26500837 PMCID: PMC4588712 DOI: 10.1016/j.fob.2015.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Amyloid precursor protein (APP) dimerizes more than its C-terminal fragments in cells. Mutations of membrane GXXXG motifs affect Aβ production but not APP dimerization. Deletion of the APP intracellular domain increases APP dimerization.
Alzheimer’s disease (AD) is a neurodegenerative disease that causes progressive loss of cognitive functions, leading to dementia. Two types of lesions are found in AD brains: neurofibrillary tangles and senile plaques. The latter are composed mainly of the β-amyloid peptide (Aβ) generated by amyloidogenic processing of the amyloid precursor protein (APP). Several studies have suggested that dimerization of APP is closely linked to Aβ production. Nevertheless, the mechanisms controlling APP dimerization and their role in APP function are not known. Here we used a new luciferase complementation assay to analyze APP dimerization and unravel the involvement of its three major domains: the ectodomain, the transmembrane domain and the intracellular domain. Our results indicate that within cells full-length APP dimerizes more than its α and β C-terminal fragments, confirming the pivotal role of the ectodomain in this process. Dimerization of the APP transmembrane (TM) domain has been reported to regulate processing at the γ-cleavage site. We show that both non-familial and familial AD mutations in the TM GXXXG motifs strongly modulate Aβ production, but do not consistently change dimerization of the C-terminal fragments. Finally, we found for the first time that removal of intracellular domain strongly increases APP dimerization. Increased APP dimerization is linked to increased non-amyloidogenic processing.
Collapse
Key Words
- AD, Alzheimer’s disease
- AICD, APP intracellular domain
- APP
- APP, amyloid precursor protein
- Alzheimer disease
- Amyloid beta peptide
- Aβ, β-amyloid peptide
- CHO, chinese hamster ovary
- CTF, C-terminal fragment
- DAPT, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester
- DTT, dithiothreitol
- Dimerization
- ECL, enzymatic chemi-luminescence
- ECLIA, electro-chemiluminescence immuno-assay
- FBS, fetal bovine serum
- FRET, fluorescence resonance energy transfer
- GXXXG motifs
- KPI, Kunitz-type protease inhibitor
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PBS, phosphate buffered saline
- PS1/PS2, presenilin1/presenilin2
- RLU, relative light unit
- SP, signal peptide
- Split luciferase
- TM, transmembrane
- YFP, yellow fluorescent protein
- sAPPα, soluble APPα
- sAPPβ, soluble APPβ
Collapse
Affiliation(s)
- Marie Decock
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Laetitia El Haylani
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Serena Stanga
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Ilse Dewachter
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Jean-Noël Octave
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Stefan N Constantinescu
- de Duve Institute and Ludwig Institute for Cancer Research, Université catholique de Louvain, Brussels 1200, Belgium
| | | |
Collapse
|
4
|
Nabar NR, Yuan F, Lin X, Wang L, Bai G, Mayl J, Li Y, Zhou SF, Wang J, Cai J, Cao C. Cell therapy: a safe and efficacious therapeutic treatment for Alzheimer's disease in APP+PS1 mice. PLoS One 2012; 7:e49468. [PMID: 23226497 PMCID: PMC3513317 DOI: 10.1371/journal.pone.0049468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Previously, our lab was the first to report the use of antigen-sensitized dendritic cells as a vaccine against Alzheimer's disease (AD). In preparation of this vaccine, we sensitized the isolated dendritic cells ex vivo with Aβ peptide, and administered these sensitized dendritic cells as a therapeutic agent. This form of cell therapy has had success in preventing and/or slowing the rate of cognitive decline when administered prior to the appearance of Aβ plaques in PDAPP mice, but has not been tested in 2 × Tg models. Herein, we test the efficacy and safety of this vaccine in halting and reversing Alzheimer's pathology in 9-month-old APP + PS1 mice. The results showed that administration of this vaccine elicits a long-lasting antibody titer, which correlated well with a reduction of Aβ burden upon histological analysis. Cognitive function in transgenic responders to the vaccine was rescued to levels similar to those found in non-transgenic mice, indicating that the vaccine is capable of providing therapeutic benefit in APP+PS1 mice when administered after the onset of AD pathology. The vaccine also shows indications of circumventing past safety problems observed in AD immunotherapy, as Th1 pro-inflammatory cytokines were not elevated after long-term vaccine administration. Moreover, microhemorrhaging and T-cell infiltration into the brain are not observed in any of the treated subjects. All in all, this vaccine has many advantages over contemporary vaccines against Alzheimer's disease, and may lead to a viable treatment for the disease in the future.
Collapse
Affiliation(s)
- Neel R. Nabar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Fang Yuan
- Chinese People Liberty Army General Hospital, Beijing, China
- Third Military Medical University, Chongqing, China
| | - Xiaoyang Lin
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Li Wang
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Ge Bai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Jonathan Mayl
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Yaqiong Li
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | | | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
5
|
Luo Z, Li J, Nabar NR, Lin X, Bai G, Cai J, Zhou SF, Cao C, Wang J. Efficacy of a therapeutic vaccine using mutated β-amyloid sensitized dendritic cells in Alzheimer's mice. J Neuroimmune Pharmacol 2012; 7:640-55. [PMID: 22684353 DOI: 10.1007/s11481-012-9371-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/17/2012] [Indexed: 01/12/2023]
Abstract
Despite FDA suspension of Elan's AN-1792 amyloid beta (Aβ) vaccine in phase IIb clinical trials, the implications of this study are the guiding principles for contemporary anti-Aβ immunotherapy against Alzheimer's disease (AD). AN-1792 showed promising results with regards to Aβ clearance and cognitive function improvement, but also exhibited an increased risk of Th1 mediated meningoencephalitis. As such, vaccine development has continued with an emphasis on eliciting a notable anti-Aβ antibody titer, while avoiding the unwanted Th1 pro-inflammatory response. Previously, we published the first report of an Aβ sensitized dendritic cell vaccine as a therapeutic treatment for AD in BALB/c mice. Our vaccine elicited an anti-Aβ titer, with indications that a Th1 response was not present. This study is the first to investigate the efficacy and safety of our dendritic cell vaccine for the prevention of AD in transgenic mouse models (PDAPP) for AD. We also used Immunohistochemistry to characterize the involvement of LXR, ABCA1, and CD45 in order to gain insight into the potential mechanisms through which this vaccine may provide benefit. The results indicate that (1) the use of mutant Aβ1-42 sensitized dendritic cell vaccine results in durable antibody production, (2) the vaccine provides significant benefits with regards to cognitive function without the global (Th1) inflammation seen in prior Aβ vaccines, (3) histological studies showed an overall decrease in Aβ burden, with an increase in LXR, ABCA1, and CD45, and (4) the beneficial results of our DC vaccine may be due to the LXR/ABCA1 pathway. In the future, mutant Aβ sensitized dendritic cell vaccines could be an efficacious and safe method for the prevention or treatment of AD that circumvents problems associated with traditional anti-Aβ vaccines.
Collapse
Affiliation(s)
- Zhongqiu Luo
- Department of Neurosurgery, Tianjin First Center Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ben Khalifa N, Tyteca D, Marinangeli C, Depuydt M, Collet JF, Courtoy PJ, Renauld JC, Constantinescu S, Octave JN, Kienlen-Campard P. Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB J 2011; 26:855-67. [PMID: 22085646 DOI: 10.1096/fj.11-190207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The two major isoforms of human APP, APP695 and APP751, differ by the presence of a Kunitz-type protease inhibitor (KPI) domain in the extracellular region. APP processing and function is thought to be regulated by homodimerization. We used bimolecular fluorescence complementation (BiFC) to study dimerization of different APP isoforms and mutants. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain did not affect fluorescence complementation, but native folding of KPI is critical for APP751 homodimerization. APP751 and APP695 dimers were mostly localized at steady state in the Golgi region, suggesting that most of the APP751 and 695 dimers are in the secretory pathway. Mutation of the KPI led to the retention of the APP homodimers in the endoplasmic reticulum. We finally showed that APP751 is more efficiently processed through the nonamyloidogenic pathway than APP695. These findings provide new insight on the particular role of KPI domain in APP dimerization. The correlation observed between dimerization, subcellular localization, and processing suggests that dimerization acts as an efficient regulator of APP trafficking in the secretory compartments that has major consequences on its processing.
Collapse
Affiliation(s)
- Naouel Ben Khalifa
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Feyt C, Pierrot N, Tasiaux B, Van Hees J, Kienlen-Campard P, Courtoy PJ, Octave JN. Phosphorylation of APP695 at Thr668 decreases gamma-cleavage and extracellular Abeta. Biochem Biophys Res Commun 2007; 357:1004-10. [PMID: 17459339 DOI: 10.1016/j.bbrc.2007.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/10/2007] [Indexed: 11/16/2022]
Abstract
Phosphorylation of human APP695 at Thr668 seems to be specific to neuronal tissue and could affect Abeta production. Metabolism of APP mutated at Thr668 residue was analyzed in CHO cell line and primary cultures of rat cortical neurons. By site-directed mutagenesis, T668A or T668D substitutions were introduced in wild-type APP695. In CHO cells, wild-type APP695 was very slightly phosphorylated at Thr668 and produced similar levels of extracellular Abeta40 as compared to APPT668A. On the contrary, APPT668D was more efficiently cleaved by beta-secretase. However, accumulated betaCTF were less cleaved by gamma-secretase and less extracellular Abeta40 was produced. Decreased susceptibility to cleavage by gamma-secretase was confirmed upon expression of C99T668D. In neurons, part of APP695 was phosphorylated at Thr668. Following neuronal expression of APPT668A, extracellular Abeta40 production was increased. In conclusion, phosphorylation of human APP695 at Thr668 increases APP beta-cleavage but decreases its gamma-cleavage and extracellular Abeta40 production.
Collapse
Affiliation(s)
- Christine Feyt
- Université catholique de Louvain, Laboratoire de pharmacologie (FARL54 10), av Hippocrate 54, B-1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Feyt C, Kienlen-Campard P, Leroy K, N'Kuli F, Courtoy PJ, Brion JP, Octave JN. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3. J Biol Chem 2005; 280:33220-7. [PMID: 16014628 DOI: 10.1074/jbc.m501610200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.
Collapse
Affiliation(s)
- Christine Feyt
- Laboratory of Experimental Pharmacology, Université catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Petit A, Pasini A, Alves Da Costa C, Ayral E, Hernandez JF, Dumanchin-Njock C, Phiel CJ, Marambaud P, Wilk S, Farzan M, Fulcrand P, Martinez J, Andrau D, Checler F. JLK isocoumarin inhibitors: Selective ?-secretase inhibitors that do not interfere with notch pathway in vitro or in vivo. J Neurosci Res 2003; 74:370-7. [PMID: 14598313 DOI: 10.1002/jnr.10747] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
gamma-Secretase activity is involved in the generation of Abeta and therefore likely contributes to the pathology of Alzheimer's disease. Blocking this activity was seen as a major therapeutic target to slow down or arrest Abeta-related AD progression. This strategy seemed more doubtful when it was established that gamma-secretase also targets other substrates including Notch, a particularly important transmembrane protein involved in vital functions, at both embryonic and adulthood stages. We have described previously new non-peptidic inhibitors able to selectively inhibit Abeta cellular production in vitro without altering Notch pathway. We show here that in vivo, these inhibitors do not alter the Notch pathway responsible for somitogenesis in the zebrafish embryo. In addition, we document further the selectivity of JLK inhibitors by showing that, unlike other described gamma-secretase inhibitors, these agents do not affect E-cadherin processing. Finally, we establish that JLKs do not inhibit beta-site APP cleaving enzymes (BACE) 1 and BACE2, alpha-secretase, the proteasome, and GSK3beta kinase. Altogether, JLK inhibitors are the sole agents to date that are able to prevent Abeta production without triggering unwanted cleavages of other proteins.
Collapse
Affiliation(s)
- A Petit
- Institut de Pharmacologie, Moléculaire et Cellulaire, CNRS, UMR6097, Valbonne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Andrau D, Dumanchin-Njock C, Ayral E, Vizzavona J, Farzan M, Boisbrun M, Fulcrand P, Hernandez JF, Martinez J, Lefranc-Jullien S, Checler F. BACE1- and BACE2-expressing human cells: characterization of beta-amyloid precursor protein-derived catabolites, design of a novel fluorimetric assay, and identification of new in vitro inhibitors. J Biol Chem 2003; 278:25859-66. [PMID: 12736275 DOI: 10.1074/jbc.m302622200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have set up stably transfected HEK293 cells overexpressing the beta-secretases BACE1 and BACE2 either alone or in combination with wild-type beta-amyloid precursor protein (betaAPP). The characterization of the betaAPP-derived catabolites indicates that cells expressing BACEs produce less genuine Abeta1- 40/42 but higher amounts of secreted sAPPbeta and N-terminal-truncated Abeta species. This was accompanied by a concomitant modulation of the C-terminal counterpart products C89 and C79 for BACE1 and BACE2, respectively. These cells were used to set up a novel BACE assay based on two quenched fluorimetric substrates mimicking the wild-type (JMV2235) and Swedish-mutated (JMV2236) betaAPP sequences targeted by BACE activities. We show that BACEs activities are enhanced by the Swedish mutation and maximal at pH 4.5. The specificity of this double assay for genuine beta-secretase activity was demonstrated by means of cathepsin D, a "false positive" BACE candidate. Thus, cathepsin D was unable to cleave preferentially the JMV2236-mutated substrate. The selectivity of the assay was also emphasized by the lack of JMV cleavage triggered by other "secretases" candidates such as ADAM10 (A disintegrin and metalloprotease 10), tumor necrosis alpha-converting enzyme, and presenilins 1 and 2. Finally, the assay was used to screen for putative in vitro BACE inhibitors. We identified a series of statine-derived sequences that dose-dependently inhibited BACE1 and BACE2 activities with IC50 in the micromolar range, some of which displaying selectivity for either BACE1 or BACE2.
Collapse
Affiliation(s)
- David Andrau
- Institut de Pharmacologie Moléculaire et Cellulaire of Centre National de la Recherche Scientifique, UMR6097, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Checler F, Vincent B. Alzheimer's and prion diseases: distinct pathologies, common proteolytic denominators. Trends Neurosci 2002; 25:616-20. [PMID: 12446128 DOI: 10.1016/s0166-2236(02)02263-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's and prion pathologies are often seen as distinct neurodegenerative diseases, particularly because the infectious character of some prion-associated pathology makes this stand apart from classical neurodegenerative, age-related syndromes. Are there specific common denominators that could link the two diseases? It appears that betaAPP (beta-amyloid precursor protein) and PrP(c) (cellular prion protein), the 'guilty' proteins involved in these pathologies, undergo protein-kinase-C-regulated proteolysis by identical proteases of the disintegrin family. This cleavage occurs in an analogous way, in the middle of the 'toxic' Abeta and PrP(c)106-126 domains of betaAPP and PrP(c), respectively. As these two sequences trigger similar caspase-dependent and -independent cascades, this proteolytic attack could be seen as an inactivating process aimed at clearing cells of these endogenous 'toxins' and, thus, preventing the associated proteinaceous accumulation usually detected in affected brains. It is our opinion that targeting these disintegrins with specific 'activators' could be a suitable strategy to slow down, or even arrest, betaAPP and PrP(c)-related aggregation and toxicity.
Collapse
Affiliation(s)
- Frédéric Checler
- IPMC du CNRS, UMR6097, 660 route des Lucioles, 06560 Valbonne, France.
| | | |
Collapse
|
12
|
Wang Y, Klunk WE, Huang GF, Debnath ML, Holt DP, Mathis CA. Synthesis and evaluation of 2-(3'-iodo-4'-aminophenyl)-6-hydroxybenzothiazole for in vivo quantitation of amyloid deposits in Alzheimer's disease. J Mol Neurosci 2002; 19:11-6. [PMID: 12212766 DOI: 10.1007/s12031-002-0004-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2001] [Accepted: 10/16/2001] [Indexed: 11/26/2022]
Abstract
A potent and brain permeable amyloid ligand has been identified as a lead compound capable of I-123/125-labelling for single photon emission computed tomography (SPECT) imaging. In this study, we report the synthesis and I-125-radiolabelling of Compound 6 and its in vitro and in vivo properties. Compound 6 [2-(3'-iodo-4'-aminophenyl)-6-hydroxybenzothiazole] bound to synthetic A beta(1-40) fibrils in a saturable manner, exhibiting an affinity (Ki) of 11+/-1.1 nM in a competitive binding assay using a tritiated thioflavin T analog ([3H]BTA-1) as radioligand. [125I]6 binding to synthetic A beta(1-40) fibrils fit a single-site model. [125I]6 exhibited several-fold higher binding to homogenates of frontal cortex from post-mortem Alzheimer's disease brain relative to age-matched control brain homogenates. No difference in binding was observed in cerebellum. The ratio of radioactivity concentration between frontal cortex and cerebellum was 6-fold higher in AD brain homogenates than the age-matched control. [125I]6 also readily penetrated the blood-brain barrier in normal control mice with an average radioactivity concentration of 6.43+/-0.62%ID/g detected in the whole brain at 2 min post i.v. injection. At 30 min, the radioactivity concentration decreased to 0.40+/-0.05%ID/g, indicating good clearance in the absence of amyloid deposits in the brain.
Collapse
Affiliation(s)
- Yanming Wang
- PET Facility, Department of Radiology, School of Medicine, University of Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The production of amyloid peptide (Abeta) from its precursor (APP) plays a key role in Alzheimer's disease (AD). However, the link between Abeta production and neuronal death remains elusive. We studied the biological effects associated with human APP expression and metabolism in rat cortical neurons. Human APP expressed in neurons is processed to produce Abeta and soluble APP. Moreover, human APP expression triggers neuronal death. Pepstatin A, an inhibitor of aspartyl proteases that reduces Abeta production, protects neurons from APP-induced neurotoxicity. This suggests that Abeta production is likely to be the critical event in the neurodegenerative process of AD.
Collapse
Affiliation(s)
- Pascal Kienlen-Campard
- Université Catholique de Louvain, FARL/UCL 54 10, Av Hippocrate 54, B-1200 Brussels, Belgium
| | | |
Collapse
|
14
|
Checler F, Alves da Costa C, Dumanchin-Njock C, Lopez-Perez E, Marambaud P, Paitel E, Petit A, Vincent B. Métabolisme du précurseur du peptide amyloïde et présénilines. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021867717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Kienlen-Campard P, Miolet S, Tasiaux B, Octave JN. Intracellular amyloid-beta 1-42, but not extracellular soluble amyloid-beta peptides, induces neuronal apoptosis. J Biol Chem 2002; 277:15666-70. [PMID: 11861655 DOI: 10.1074/jbc.m200887200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD), the most frequent cause of dementia, is characterized by an important neuronal loss. A typical histological hallmark of AD is the extracellular deposition of beta-amyloid peptide (A beta), which is produced by the cleavage of the amyloid precursor protein (APP). Most of the gene mutations that segregate with the inherited forms of AD result in increasing the ratio of A beta 42/A beta 40 production. A beta 42 also accumulates in neurons of AD patients. Altogether, these data strongly suggest that the neuronal production of A beta 42 is a critical event in AD, but the intraneuronal A beta 42 toxicity has never been demonstrated. Here, we report that the long term expression of human APP in rat cortical neurons induces apoptosis. Although APP processing leads to production of extracellular A beta 1-40 and soluble APP, these extracellular derivatives do not induce neuronal death. On the contrary, neurons undergo apoptosis as soon as they accumulate intracellular A beta 1-42 following the expression of full-length APP or a C-terminal deleted APP isoform. The inhibition of intraneuronal A beta 1-42 production by a functional gamma-secretase inhibitor increases neuronal survival. Therefore, the accumulation of intraneuronal A beta 1-42 is the key event in the neurodegenerative process that we observed.
Collapse
Affiliation(s)
- Pascal Kienlen-Campard
- Université Catholique de Louvain, FARL/UCL 54 10, av Hippocrate 54, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
16
|
Shuli S, Yongmei Z, Zhiwei Z, Zhijuan J. beta-Amyloid and its binding protein in the hippocampus of diabetic mice: effect of APP17 peptide. Neuroreport 2001; 12:3317-9. [PMID: 11711878 DOI: 10.1097/00001756-200110290-00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate whether changes in Abeta and ERAB exist in the brain of diabetic mice, and to observe the effects of APP17 peptide. The numbers of neurons stained by APP17 peptide Abeta1-40 Abeta1-42 Abeta1-16 and ERAB antibodies in the brain of diabetic mice was increased compared with normal mice. Staining in APP17 peptide-protected mice was similar to normal mice. We conclude that increased Abeta1-42 and ERAB is an important cause of neuronal degeneration in diabetic encephalopathy. APP17 peptide retards neuronal degeneration by regulating the metabolism of Abeta.
Collapse
Affiliation(s)
- S Shuli
- Beijing Research Laboratory for Brain Aging, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053, China
| | | | | | | |
Collapse
|
17
|
Dumanchin-Njock C, Alves da Costa CA, Mercken L, Pradier L, Checler F. The caspase-derived C-terminal fragment of betaAPP induces caspase-independent toxicity and triggers selective increase of Abeta42 in mammalian cells. J Neurochem 2001; 78:1153-61. [PMID: 11553689 DOI: 10.1046/j.1471-4159.2001.00513.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During its physiopathological maturation, the beta-amyloid precursor protein undergoes several distinct proteolytic events by activities called secretases. In Alzheimer's disease, the main histological hallmark called senile plaque is clearly linked to the overproduction of the amyloid peptides Abeta40 and Abeta42, two highly aggregable betaAPP-derived fragments generated by combined cleavages by beta- and gamma-secretases. Recently, an alternative hydrolytic pathway was described, involving another category of proteolytic activities called caspases, responsible for the production of a 31 amino acids betaAPP C-terminal fragment called C31. C31 was reported to lower the viability of N2a cells but the exact mechanisms mediating C31-toxicity remained to be established. Here we show that the transient transfection of pSV2 vector encoding C31 lowers by about 80% TSM1 neuronal cells viability. Arguing against a C31-stimulated apoptotic response, we demonstrate by combined enzymatic and immunological approaches that C31 expression did not modulate basal or staurosporine-induced caspase 3-like activity and pro-caspase-3 activation. Furthermore, C31 did not modify Bax and p53 expressions, poly-(ADP-ribose)-polymerase cleavage and cytochrome c translocation into the cytosol. However, we established that C31 overexpression triggers selective increase of Abeta42 but not Abeta40 production by HEK293 cells expressing wild-type betaAPP751. Altogether, our data demonstrate that C31 induces a caspase-independent toxicity in TSM1 neurons and potentiates the pathogenic betaAPP maturation pathway by increasing selectively Abeta42 species in wild type-betaAPP-expressing human cells.
Collapse
Affiliation(s)
- C Dumanchin-Njock
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université de Nice-Sophia Antipolis, Valbonne, France
| | | | | | | | | |
Collapse
|
18
|
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of ligand gated ion channels which are widely distributed in the human brain. Multiple subtypes of these receptors exist, each with individual pharmacological and functional profiles. They mediate the effects of nicotine, a widely used drug of abuse, are involved in a number of physiological and behavioural processes and are additionally implicated in a number of pathological conditions such as Alzheimer's disease, Parkinson's disease and schizophrenia. The nAChRs have a pentameric structure composed of five membrane spanning subunits, of which nine different types have thus far been identified and cloned. The multiple subunits identified provide the basis for the heterogeneity of structure and function observed in the nAChR subtypes and are responsible for the individual characteristics of each. A substantial amount of information on human nAChR structure and function has come from studies on neuroblastoma cell lines which naturally express nAChRs and from recombinant nAChRs expressed in Xenopus oocytes. In vitro brain nAChR distribution can be mapped with a number of appropriate agonist and antagonist radioligands and subunit distribution may be mapped by in situ hybridization using subunit specific mRNA probes. Receptor distribution in the living human brain can be studied with noninvasive imaging techniques such as PET and SPECT, with a significant reduction in nAChRs in the brains of Alzheimer's patients having been identified with [11C] nicotine in PET studies. Despite the significant body of knowledge now accumulated about nAChRs, much remains to be elucidated. This review will attempt to describe the current knowledge on the nAChR subtypes in the human brain, their functional roles and neuropathological involvement.
Collapse
Affiliation(s)
- D Paterson
- Department of Clinical Neuroscience, Occupational Therapy and Elderly Care Research, Karolinska Institute, Huddinge Univerity Hospital, Sweden
| | | |
Collapse
|
19
|
Octave JN, Essalmani R, Tasiaux B, Menager J, Czech C, Mercken L. The role of presenilin-1 in the gamma-secretase cleavage of the amyloid precursor protein of Alzheimer's disease. J Biol Chem 2000; 275:1525-8. [PMID: 10636839 DOI: 10.1074/jbc.275.3.1525] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilin-1 (PS1) is required for the release of the intracellular domain of Notch from the plasma membrane as well as for the cleavage of the amyloid precursor protein (APP) at the gamma-secretase cleavage site. It remains to be demonstrated whether PS1 acts by facilitating the activity of the protease concerned or is the protease itself. PS1 could have a gamma-secretase activity by itself or could traffic APP and Notch to the appropriate cellular compartment for processing. Human APP 695 and PS1 were coexpressed in Sf9 insect cells, in which endogenous gamma-secretase activity is not detected. In baculovirus-infected Sf9 cells, PS1 undergoes endoproteolysis and interacts with APP. However, PS1 does not cleave APP in Sf9 cells. In CHO cells, endocytosis of APP is required for Abeta secretion. Deletion of the cytoplasmic sequence of APP (APPDeltaC) inhibits both APP endocytosis and Abeta production. When APPDeltaC and PS1 are coexpressed in CHO cells, Abeta is secreted without endocytosis of APP. Taken together, these results conclusively show that, although PS1 does not cleave APP in Sf9 cells, PS1 allows the secretion of Abeta without endocytosis of APP by CHO cells.
Collapse
Affiliation(s)
- J N Octave
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Macq AF, Czech C, Essalmani R, Brion JP, Maron A, Mercken L, Pradier L, Octave JN. The long term adenoviral expression of the human amyloid precursor protein shows different secretase activities in rat cortical neurons and astrocytes. J Biol Chem 1998; 273:28931-6. [PMID: 9786896 DOI: 10.1074/jbc.273.44.28931] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant adenoviruses were used for the expression of human amyloid precursor protein (APP) of Alzheimer's disease in primary cultures of rat cortical neurons and astrocytes. The catabolic pathways of human APP were studied 3 to 4 days after infection, when the equilibrium of APP production was reached. Although the expression of human wild type APP (WtAPP) by rat neurons induced the production of both extracellular and intraneuronal amyloid peptide (Abeta), Abeta was not detected in the culture medium of rat astrocytes producing human WtAPP. Because a low beta-secretase activity was previously reported in rodent astrocytes, we wondered whether modifications of the APP amino acid sequence at the beta-secretase clipping site would modify the astrocytic production of Abeta. Interestingly, rat astrocytes produced high amounts of Abeta after expression of human APP carrying a double amino acid substitution responsible for Alzheimer's disease in a large Swedish family (SwAPP). In both rat cortical neurons and astrocytes, the beta-secretase cleavage of the human SwAPP occurred very early in the secretion process in a cellular compartment in which a different sorting of SwAPP and WtAPP seems unlikely. These results suggest that human WtAPP and SwAPP could be processed by different beta-secretase activities.
Collapse
Affiliation(s)
- A F Macq
- Laboratory of Experimental Pharmacology, Université Catholique de Louvain, FARL 5410, 54 Avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
21
|
McLoughlin DM, Miller CC. The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett 1996; 397:197-200. [PMID: 8955346 DOI: 10.1016/s0014-5793(96)01128-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used the yeast two-hybrid system to screen for proteins that interact with the carboxy-terminal domain of APP. Six different clones were isolated and sequence analyses revealed that they encoded domains of a previously described neuronal protein Fe65, a homologue of Fe65 and a homologue of protein X11. All of these proteins contain one or more phosphotyrosine binding (PTB) domains. PTB domain proteins bind to the sequence Asn-Pro-X-Tyr when the Tyr is phosphorylated and are believed to function in signal transduction. APP contains such a motif. These results are consistent with a role for APP in signal transduction mechanisms.
Collapse
Affiliation(s)
- D M McLoughlin
- Department of Neurology, The Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, UK
| | | |
Collapse
|