1
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
2
|
Buss EW, Corbett NJ, Roberts JG, Ybarra N, Musial TF, Simkin D, Molina-Campos E, Oh KJ, Nielsen LL, Ayala GD, Mullen SA, Farooqi AK, D'Souza GX, Hill CL, Bean LA, Rogalsky AE, Russo ML, Curlik DM, Antion MD, Weiss C, Chetkovich DM, Oh MM, Disterhoft JF, Nicholson DA. Cognitive aging is associated with redistribution of synaptic weights in the hippocampus. Proc Natl Acad Sci U S A 2021; 118:e1921481118. [PMID: 33593893 PMCID: PMC7923642 DOI: 10.1073/pnas.1921481118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."
Collapse
Affiliation(s)
- Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Nicola J Corbett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Joshua G Roberts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Natividad Ybarra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dina Simkin
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | | | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Lauren L Nielsen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gelique D Ayala
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Sheila A Mullen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Anise K Farooqi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gary X D'Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Corinne L Hill
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Linda A Bean
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Annalise E Rogalsky
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Matthew L Russo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dani M Curlik
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Marci D Antion
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - M Matthew Oh
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612;
| |
Collapse
|
3
|
Koleilat A, Dugdale JA, Christenson TA, Bellah JL, Lambert AM, Masino MA, Ekker SC, Schimmenti LA. L-type voltage-gated calcium channel agonists mitigate hearing loss and modify ribbon synapse morphology in the zebrafish model of Usher syndrome type 1. Dis Model Mech 2020; 13:13/11/dmm043885. [PMID: 33361086 PMCID: PMC7710014 DOI: 10.1242/dmm.043885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
The mariner (myo7aa−/−) mutant is a zebrafish model for Usher syndrome type 1 (USH1). To further characterize hair cell synaptic elements in myo7aa−/− mutants, we focused on the ribbon synapse and evaluated ultrastructure, number and distribution of immunolabeled ribbons, and postsynaptic densities. By transmission electron microscopy, we determined that myo7aa−/− zebrafish have fewer glutamatergic vesicles tethered to ribbon synapses, yet maintain a comparable ribbon area. In myo7aa−/− hair cells, immunolocalization of Ctbp2 showed fewer ribbon-containing cells in total and an altered distribution of Ctbp2 puncta compared to wild-type hair cells. myo7aa−/− mutants have fewer postsynaptic densities – as assessed by MAGUK immunolabeling – compared to wild-type zebrafish. We quantified the circular swimming behavior of myo7aa−/− mutant fish and measured a greater turning angle (absolute smooth orientation). It has previously been shown that L-type voltage-gated calcium channels are necessary for ribbon localization and occurrence of postsynaptic density; thus, we hypothesized and observed that L-type voltage-gated calcium channel agonists change behavioral and synaptic phenotypes in myo7aa−/− mutants in a drug-specific manner. Our results indicate that treatment with L-type voltage-gated calcium channel agonists alter hair cell synaptic elements and improve behavioral phenotypes of myo7aa−/− mutants. Our data support that L-type voltage-gated calcium channel agonists induce morphological changes at the ribbon synapse – in both the number of tethered vesicles and regarding the distribution of Ctbp2 puncta – shift swimming behavior and improve acoustic startle response. Summary: We quantified behavioral and synaptic morphology differences between wild-type zebrafish larvae and the mariner (myo7aa−/−) mutant, finding that these differences can be modified by L-type voltage-gated calcium channel agonists.
Collapse
Affiliation(s)
- Alaa Koleilat
- College of Continuing and Professional Studies, University of Minnesota, Minneapolis, MN 55108, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Clinical and Translational Science Track, Rochester, MN 55905, USA.,Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A Dugdale
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jeffrey L Bellah
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA.,Department of Genetics and Development, Columbia University, New York City, NY 10032, USA
| | - Aaron M Lambert
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mark A Masino
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C Ekker
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN 55905, USA .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Ophthalmology and Visual Neuroscience, University of Minnesota, Minneapolis, MN 55454, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Nicholson DA, Geinisman Y. Axospinous synaptic subtype-specific differences in structure, size, ionotropic receptor expression, and connectivity in apical dendritic regions of rat hippocampal CA1 pyramidal neurons. J Comp Neurol 2009; 512:399-418. [PMID: 19006199 DOI: 10.1002/cne.21896] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morphology of axospinous synapses and their parent spines varies widely. Additionally, many of these synapses are contacted by multiple synapse boutons (MSBs) and show substantial variability in receptor expression. The two major axospinous synaptic subtypes are perforated and nonperforated, but there are several subcategories within these two classes. The present study used serial section electron microscopy to determine whether perforated and nonperforated synaptic subtypes differed with regard to their distribution, size, receptor expression, and connectivity to MSBs in three apical dendritic regions of rat hippocampal area CA1: the proximal and distal thirds of stratum radiatum, and the stratum lacunosum-moleculare. All synaptic subtypes were present throughout the apical dendritic regions, but there were several subclass-specific differences. First, segmented, completely partitioned synapses changed in number, proportion, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor expression with distance from the soma beyond that found within other perforated synaptic subtypes. Second, atypically large, nonperforated synapses showed N-methyl-D-aspartate (NMDA) receptor immunoreactivity identical to that of perforated synapses, levels of AMPA receptor expression intermediate to that of nonperforated and perforated synapses, and perforated synapse-like changes in structure with distance from the soma. Finally, MSB connectivity was highest in the proximal stratum radiatum, but only for those MSBs composed of nonperforated synapses. The immunogold data suggest that most MSBs would not generate simultaneous depolarizations in multiple neurons or spines, however, because the vast majority of MSBs are comprised of two synapses with abnormally low levels of receptor expression, or involve one synapse with a high level of receptor expression and another with only a low level.
Collapse
Affiliation(s)
- Daniel A Nicholson
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
5
|
KOBAYASHI CHIHO, AOKI CHIYE, KOJIMA NOBUHIKO, YAMAZAKI HIROYUKI, SHIRAO TOMOAKI. Drebrin a content correlates with spine head size in the adult mouse cerebral cortex. J Comp Neurol 2007; 503:618-26. [PMID: 17559090 PMCID: PMC2844454 DOI: 10.1002/cne.21408] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptic activities alter synaptic strengths at the axospinous junctions, and such changes are often accompanied by changes in the size of the postsynaptic spines. We have been exploring the idea that drebrin A, a neuron-specific actin-binding protein localized on the postsynaptic side of excitatory synapses, may be a molecule that links synaptic activity to the shape and content of spines. Here, we performed electron microscopic immunocytochemistry with the nondiffusible gold label to explore the relationship among levels of drebrin A, the NR2A subunit of N-methyl-D-aspartate receptors, and the size of spines in the perirhinal cortex of adult mouse brains. In contrast to the membranous localization within neonatal spines, most immunogold particles for drebrin A were localized to the cytoplasmic core region of spines in mature spines. This distribution suggests that drebrin within adult spines may reorganize the F-actin network at the spine core, in addition to its known neonatal role in spine formation. Drebrin A-immunopositive (DIP) spines exhibited larger spine head areas and longer postsynaptic densities (PSDs) than drebrin A-immunonegative (DIN) spines (P < 0.001). Furthermore, spine head area and PSD lengths correlated positively with drebrin A levels (r = 0.47 and 0.40). The number of synaptic NR2A immunolabels was also higher in DIP spines than in DIN spines, whereas their densities per unit lengths of PSD were not significantly different. These differences between the DIP and the DIN spines indicate that spine sizes and synaptic protein composition of mature brains are regulated, at least in part, by drebrin A levels.
Collapse
Affiliation(s)
- CHIHO KOBAYASHI
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - CHIYE AOKI
- Center for Neural Science, New York University, New York, New York 10003
| | - NOBUHIKO KOJIMA
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - HIROYUKI YAMAZAKI
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - TOMOAKI SHIRAO
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Correspondence to: Tomoaki Shirao, Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
6
|
Abstract
The biology of learning, and short-term and long-term memory, as revealed by Aplysia and other organisms, is reviewed.
Collapse
Affiliation(s)
- Eric R Kandel
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
7
|
Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D. Activity-induced changes of spine morphology. Hippocampus 2003; 12:585-91. [PMID: 12440574 DOI: 10.1002/hipo.10095] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spine morphology has been shown in recent years to exhibit a high degree of plasticity. In developing tissue such as organotypic slice cultures, shape changes in spines as well as reorganization of the postsynaptic density (PSD) occur within minutes. Furthermore, several studies have shown that these and other changes can be induced by or are dependent on synaptic activation. Formation of filopodia, enlargement of spines, formation of spines with perforated PSDs, appearance of new spines, and formation of specific types of synapses such as multiple synapse boutons (MSBs), in which two spines contact the same terminal, have all been reported to be induced in an activity-dependent manner. The common denominator of most of these different processes is that they are calcium and NMDA receptor dependent. Their time course, however, may vary. Some appear quite rapidly after stimulation (e.g., filopodia, perforated synapses), while others are clearly more delayed (e.g., formation of spines, appearance of MSBs). How these different structural changes relate to each other, as well as their functional significance, have therefore become intriguing issues. The characteristics of these different types of morphological changes are reviewed, with a discussion of the possibility that structural plasticity contributes to changes in synaptic efficacy.
Collapse
Affiliation(s)
- Irina Nikonenko
- Division of Neuropharmacology, Centre Médical Universitaire, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Ganeshina O, Berry RW, Petralia RS, Nicholson DA, Geinisman Y. Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. J Comp Neurol 2003; 468:86-95. [PMID: 14648692 DOI: 10.1002/cne.10950] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Axospinous synapses are traditionally divided according to postsynaptic density (PSD) configuration into a perforated subtype characterized by a complex-shaped PSD and nonperforated subtype exhibiting a simple-shaped, disc-like PSD. It has been hypothesized that perforated synapses are especially important for synaptic plasticity because they have a higher efficacy of impulse transmission. The aim of the present study was to test this hypothesis. The number of postsynaptic AMPA receptors (AMPARs) is widely regarded as the major determinant of synaptic efficacy. Therefore, the expression of AMPARs was evaluated in the two synaptic subtypes and compared with that of NMDA receptors (NMDARs). Postembedding immunogold electron microscopy was used to quantify the immunoreactivity following single labeling of AMPARs or NMDARs in serial sections through the CA1 stratum radiatum of adult rats. The results showed that all perforated synapses examined were immunopositive for AMPARs. In contrast, only a proportion of nonperforated synapses (64% on average) contained immunogold particles for AMPARs. The number of immunogold particles for AMPARs was markedly and significantly higher in perforated synapses than in immunopositive nonperforated synapses. Although all synapses of both subtypes were NMDAR immunopositive perforated synapses contained significantly more immunogold particles for NMDARs than nonperforated ones. Multivariate analysis of variance revealed that the mode of AMPAR and NMDAR expression is related to the complexity of PSD configuration, not only to PSD size. These findings support the notion that perforated synapses may evoke larger postsynaptic responses relative to nonperforated synapses and, hence, contribute to an enhancement of synaptic transmission associated with some forms of synaptic plasticity.
Collapse
Affiliation(s)
- Olga Ganeshina
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
One of the most remarkable aspects of an animal's behavior is the ability to modify that behavior by learning, an ability that reaches its highest form in human beings. For me, learning and memory have proven to be endlessly fascinating mental processes because they address one of the fundamental features of human activity: our ability to acquire new ideas from experience and to retain these ideas over time in memory. Moreover, unlike other mental processes such as thought, language, and consciousness, learning seemed from the outset to be readily accessible to cellular and molecular analysis. I, therefore, have been curious to know: What changes in the brain when we learn? And, once something is learned, how is that information retained in the brain? I have tried to address these questions through a reductionist approach that would allow me to investigate elementary forms of learning and memory at a cellular molecular level-as specific molecular activities within identified nerve cells.
Collapse
Affiliation(s)
- E R Kandel
- Howard Hughes Medical Institute, Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
10
|
Abstract
High-frequency stimulation of excitatory synapses in many regions of the brain triggers a lasting increase in the efficacy of synaptic transmission referred to as long-term potentiation (LTP) and believed to contribute to learning and memory. One hypothesis proposed to account for the stability and properties of this functional plasticity is a structural remodeling of spine synapses. This possibility has recently received support from several studies. It has been found that spines are highly dynamic structures, that they can be formed very rapidly, and that synaptic activity and calcium modulate changes in spine shape and formation of new spines. Ultrastructural analyses bring additional support to these observations and suggest that LTP is associated with a remodeling of the postsynaptic density (PSD) and a process of spine duplication. This new information is reviewed and interpreted in light of other recent advances concerning the mechanisms of LTP and especially the role of postsynaptic glutamate receptor turnover in this form of plasticity. Taken together, a view is emerging that suggests that morphologic changes of spine synapses are associated with LTP and that they not only correlate with, but probably also contribute to the increase in synaptic transmission.
Collapse
Affiliation(s)
- D Muller
- Neuropharmacology, Centre Médical Universitaire, Geneva, Switzerland.
| | | | | |
Collapse
|
11
|
Kasyanov AM, Maximov VV, Byzov AL, Berretta N, Sokolov MV, Gasparini S, Cherubini E, Reymann KG, Voronin LL. Differences in amplitude-voltage relations between minimal and composite mossy fibre responses of rat CA3 hippocampal neurons support the existence of intrasynaptic ephaptic feedback in large synapses. Neuroscience 2001; 101:323-36. [PMID: 11074156 DOI: 10.1016/s0306-4522(00)00366-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Computer simulations and electrophysiological experiments have been performed to test the hypothesis on the existence of an ephaptic interaction in purely chemical synapses. According to this hypothesis, the excitatory postsynaptic current would depolarize the presynaptic release site and further increase transmitter release, thus creating an intrasynaptic positive feedback. For synapses with the ephaptic feedback, computer simulations predicted non-linear amplitude-voltage relations and voltage dependence of paired-pulse facilitation. The deviation from linearity depended on the strength of the feedback determined by the value of the synaptic cleft resistance. The simulations showed that, in the presence of the intrasynaptic feedback, recruitment of imperfectly clamped synapses and synapses with linear amplitude-voltage relations tended to reduce the non-linearity and voltage dependence of paired-pulse facilitation. Therefore, the simulations predicted that the intrasynaptic feedback would particularly affect small excitatory postsynaptic currents induced by activation of electrotonically close synapses with long synaptic clefts. In electrophysiological experiments performed on hippocampal slices, the whole-cell configuration of the patch-clamp technique was used to record excitatory postsynaptic currents evoked in CA3 pyramidal cells by activation of large mossy fibre synapses. In accordance with the simulation results, minimal excitatory postsynaptic currents exhibited "supralinear" amplitude-voltage relations at hyperpolarized membrane potentials, decreases in the failure rate and voltage-dependent paired-pulse facilitation. Composite excitatory postsynaptic currents evoked by activation of a large amount of presynaptic fibres typically bear linear amplitude-voltage relationships and voltage-independent paired-pulse facilitation. These data are consistent with the hypothesis on a strong ephaptic feedback in large mossy fibre synapses. The feedback would provide a mechanism whereby signals from large synapses would be amplified. The ephaptic feedback would be more effective on synapses activated in isolation or together with electrotonically remote inputs. During synchronous activation of a large number of neighbouring inputs, suppression of the positive intrasynaptic feedback would prevent abnormal boosting of potent signals.
Collapse
Affiliation(s)
- A M Kasyanov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117865, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The central nervous system functions primarily to convert patterns of activity in sensory receptors into patterns of muscle activity that constitute appropriate behavior. At the anatomical level this requires two complementary processes: a set of genetically encoded rules for building the basic network of connections, and a mechanism for subsequently fine tuning these connections on the basis of experience. Identifying the locus and mechanism of these structural changes has long been among neurobiology's major objectives. Evidence has accumulated implicating a particular class of contacts, excitatory synapses made onto dendritic spines, as the sites where connective plasticity occurs. New developments in light microscopy allow changes in spine morphology to be directly visualized in living neurons and suggest that a common mechanism, based on dynamic actin filaments, is involved in both the formation of dendritic spines during development and their structural plasticity at mature synapses.
Collapse
Affiliation(s)
- A Matus
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
13
|
Berretta N, Rossokhin AV, Kasyanov AM, Sokolov MV, Cherubini E, Voronin LL. Postsynaptic hyperpolarization increases the strength of AMPA-mediated synaptic transmission at large synapses between mossy fibers and CA3 pyramidal cells. Neuropharmacology 2000; 39:2288-301. [PMID: 10974312 DOI: 10.1016/s0028-3908(00)00076-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In chemical synapses information flow is polarized. However, the postsynaptic cells can affect transmitter release via retrograde chemical signaling. Here we explored the hypothesis that, in large synapses, having large synaptic cleft resistance, transmitter release can be enhanced by electrical (ephaptic) signaling due to depolarization of the presynaptic release site induced by the excitatory postsynaptic current itself. The hypothesis predicts that, in such synapses, postsynaptic hyperpolarization would increase response amplitudes "supralinearly", i.e. stronger than predicted from the driving force shift. We found supralinear increases in the amplitude of minimal excitatory postsynaptic potential (EPSP) during hyperpolarization of CA3 pyramidal neurons. Failure rate, paired-pulse facilitation, coefficient of variation of the EPSP amplitude and EPSP quantal content were also modified. The effects were especially strong on mossy fiber EPSPs (MF-EPSPs) mediated by the activation of large synapses and identified pharmacologically or by their kinetics. The effects were weaker on commissural fiber EPSPs mediated by smaller and more remote synapses. Even spontaneous membrane potential fluctuations were associated with supralinear MF-EPSP increases and failure rate reduction. The results suggest the existence of a novel mechanism for retrograde control of synaptic efficacy from postsynaptic membrane potential and are consistent with the ephaptic feedback hypothesis.
Collapse
Affiliation(s)
- N Berretta
- Neuroscience Program and INFM Unit, International School for Advanced Studies, Via Beirut 2-4, 34014, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Fischer M, Kaech S, Wagner U, Brinkhaus H, Matus A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci 2000; 3:887-94. [PMID: 10966619 DOI: 10.1038/78791] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic spines at excitatory synapses undergo rapid, actin-dependent shape changes which may contribute to plasticity in brain circuits. Here we show that actin dynamics in spines are potently inhibited by activation of either AMPA or NMDA subtype glutamate receptors. Activation of either receptor type inhibited actin-based protrusive activity from the spine head. This blockade of motility caused spines to round up so that spine morphology became both more stable and more regular. Inhibition of spine motility by AMPA receptors was dependent on postsynaptic membrane depolarization and influx of Ca 2+ through voltage-activated channels. In combination with previous studies, our results suggest a two-step process in which spines initially formed in response to NMDA receptor activation are subsequently stabilized by AMPA receptors.
Collapse
Affiliation(s)
- M Fischer
- Friedrich Miescher Institute, P.O. Box 2543, 4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Lüscher C, Nicoll RA, Malenka RC, Muller D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 2000; 3:545-50. [PMID: 10816309 DOI: 10.1038/75714] [Citation(s) in RCA: 471] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biochemical composition of the postsynaptic membrane and the structure of dendritic spines may be rapidly modulated by synaptic activity. Here we review these findings, discuss their implications for long-term potentiation (LTP) and long-term depression (LTD) and propose a model of sequentially occurring expression mechanisms.
Collapse
Affiliation(s)
- C Lüscher
- Department of Pharmacology (APSIC), CMU, 1, Rue Michel-Servet, Université de Genève, 1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
16
|
Muller D, Djebbara-Hannas Z, Jourdain P, Vutskits L, Durbec P, Rougon G, Kiss JZ. Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci U S A 2000; 97:4315-20. [PMID: 10760298 PMCID: PMC18239 DOI: 10.1073/pnas.070022697] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) contribute to long-term potentiation (LTP) in the CA1 hippocampus. Here we report that the deficient LTP found in slices prepared from NCAM knockout mice and in organotypic slice cultures treated with Endo-N, an enzyme that cleaves the PSA moiety of NCAM, can be rescued by brain-derived neurotrophic factor (BDNF). This effect is not reproduced by nerve growth factor, but can be obtained with high concentrations of NT4/5. The effect of BDNF cannot be accounted for by modifications of N-methyl-D-aspartate receptor-dependent responses or of high-frequency bursts. PSA-NCAM, however, could directly interact with BDNF. Exogenous application of PSA residues or recombinant PSA-NCAM also prevents LTP. Furthermore trkB phosphorylation, and thus BDNF signaling, is reduced in both NCAM knockout mice and Endo-N-treated slice cultures. These results suggest that one action of PSA-NCAM could be to sensitize pyramidal neurons to BDNF, thereby modulating activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- D Muller
- Neuropharmacology and Department of Morphology, Centre Médical Universitaire, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Kandel ER, Pittenger C. The past, the future and the biology of memory storage. Philos Trans R Soc Lond B Biol Sci 1999; 354:2027-52. [PMID: 10670023 PMCID: PMC1692699 DOI: 10.1098/rstb.1999.0542] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We here briefly review a century of accomplishments in studying memory storage and delineate the two major questions that have dominated thinking in this area: the systems question of memory, which concerns where in the brain storage occurs; and the molecular question of memory, which concerns the mechanisms whereby memories are stored and maintained. We go on to consider the themes that memory research may be able to address in the 21st century. Finally, we reflect on the clinical and societal import of our increasing understanding of the mechanisms of memory, discussing possible therapeutic approaches to diseases that manifest with disruptions of learning and possible ethical implication of the ability, which is on the horizon, to ameliorate or even enhance human memory.
Collapse
Affiliation(s)
- E R Kandel
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
19
|
Abstract
In the adult brain, actin is concentrated in dendritic spines where it can produce rapid changes in their shape. Through various synaptic junction proteins, this postsynaptic actin is linked to neurotransmitter receptors, influencing their function and, in turn, being influenced by them. Thus, the actin cytoskeleton is emerging as a key mediator between signal transmission and anatomical plasticity at excitatory synapses.
Collapse
Affiliation(s)
- A Matus
- Friedrich Miecher Institute PO Box 2543, 4002, Basel, Switzerland.
| |
Collapse
|
20
|
Skladchikova G, Ronn LC, Berezin V, Bock E. Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 1999; 57:207-18. [PMID: 10398298 DOI: 10.1002/(sici)1097-4547(19990715)57:2<207::aid-jnr6>3.0.co;2-m] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays an important role in synaptic plasticity in embryonic and adult brain. Recently, it has been demonstrated that NCAM is capable of binding and hydrolyzing extracellular ATP. The purpose of the present study was to evaluate the role of extracellular ATP in NCAM-mediated cellular adhesion and neurite outgrowth. We here show that extracellularly added adenosine triphosphate (ATP) and its structural analogues, adenosine-5'-O-(3-thiothiophosphate), beta, gamma-methylenadenosine-5'-triphosphate, beta, gamma-imidoadenosine-5-triphosphate, and UTP, in varying degrees inhibited aggregation of hippocampal neurons. Rat glial BT4Cn cells are unable to aggregate when grown on agar but acquire this capacity when transfected with NCAM. However, addition of extracellular ATP to NCAM-transfected BT4Cn cells inhibited aggregation. Furthermore, neurite outgrowth from hippocampal neurons in cultures allowing NCAM-homophilic interactions was inhibited by addition of extracellular nucleotides. These findings indicate that NCAM-mediated adhesion may be modulated by extracellular ATP. Moreover, extracellularly added ATP stimulated neurite outgrowth from hippocampal neurons under conditions non-permissive for NCAM-homophilic interactions, and neurite outgrowth stimulated by extracellular ATP could be inhibited by a synthetic peptide corresponding to the so-called cell adhesion molecule homology domain (CHD) of the fibroblast growth factor receptor (FGFR) and by FGFR antibodies binding to this domain. Antibodies against the fibronectin type-III homology modules of NCAM, in which a putative site for ATP binding and hydrolysis is located, also abolished the neurite outgrowth-promoting effect of ATP. The non-hydrolyzable analogues of ATP all strongly inhibited neurite outgrowth. Our results indicate that extracellular ATP may be involved in synaptic plasticity through a modulation of NCAM-mediated adhesion and neurite outgrowth.
Collapse
Affiliation(s)
- G Skladchikova
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|