1
|
Comparison of Two Rapid Assays for the Detection of BRAF V600 Mutations in Metastatic Melanoma including Positive Sentinel Lymph Nodes. Diagnostics (Basel) 2022; 12:diagnostics12030751. [PMID: 35328303 PMCID: PMC8947166 DOI: 10.3390/diagnostics12030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Testing for the BRAF mutation is mandatory for the management of patients with locally advanced or metastatic melanoma. Molecular analysis based on DNA sequencing remains the gold-standard method for the screening of the different BRAF mutations. These methods must be rapid, sensitive, and specific enough to allow optimal therapeutic management in daily practice and also to include patients in clinical trials. Here, we compared the Idylla BRAF Mutation Test and the anti-BRAF V600E (clone VE1) immunohistochemistry (IHC) in 90 melanoma samples, with a focus on a challenging cohort of 32 positive sentinel lymph nodes. The BRAF status was assessed with both methods independently of the percentage of tumor cells. The concordance rate was calculated excluding both non-contributory analyses and BRAFV600K/R/M mutants due to the specific V600E-IHC test design. The incidence of the BRAFV600E mutation was 33% with both BRAF Idylla and BRAF IHC. The agreement rate was 91% (72/79). Although the agreement rate was high, we suggest that the use of IHC is more suitable for rapid BRAF testing on sentinel lymph node biopsies when associated with a low percentage and scattered tumor cells, which gave a high risk of non-contributory analysis and/or false negative results with the IdyllaTMBRAF Mutation Test.
Collapse
|
2
|
Cheng LY, Haydu LE, Song P, Nie J, Tetzlaff MT, Kwong LN, Gershenwald JE, Davies MA, Zhang DY. High sensitivity sanger sequencing detection of BRAF mutations in metastatic melanoma FFPE tissue specimens. Sci Rep 2021; 11:9043. [PMID: 33907234 PMCID: PMC8079675 DOI: 10.1038/s41598-021-88391-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/08/2021] [Indexed: 01/17/2023] Open
Abstract
Mutations in the BRAF gene at or near the p. V600 locus are informative for therapy selection, but current methods for analyzing FFPE tissue DNA generally have a limit of detection of 5% variant allele frequency (VAF), or are limited to the single variant (V600E). These can result in false negatives for samples with low VAFs due to low tumor content or subclonal heterogeneity, or harbor non-V600 mutations. Here, we show that Sanger sequencing using the NuProbe VarTrace BRAF assay, based on the Blocker Displacement Amplification (BDA) technology, is capable of detecting BRAF V600 mutations down to 0.20% VAF from FFPE lymph node tissue samples. Comparison experiments on adjacent tissue sections using BDA Sanger, immunohistochemistry (IHC), digital droplet PCR (ddPCR), and NGS showed 100% concordance among all 4 methods for samples with BRAF mutations at ≥ 1% VAF, though ddPCR did not distinguish the V600K mutation from the V600E mutation. BDA Sanger, ddPCR, and NGS (with orthogonal confirmation) were also pairwise concordant for lower VAF mutations down to 0.26% VAF, but IHC produced a false negative. Thus, we have shown that Sanger sequencing can be effective for rapid detection and quantitation of multiple low VAF BRAF mutations from FFPE samples. BDA Sanger method also enabled detection and quantitation of less frequent, potentially actionable non-V600 mutations as demonstrated by synthetic samples.
Collapse
Affiliation(s)
- Lauren Y Cheng
- Department of Bioengineering, Rice University, 65000 Main St, Houston, TX, 77030, USA
| | - Lauren E Haydu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ping Song
- Department of Bioengineering, Rice University, 65000 Main St, Houston, TX, 77030, USA
| | - Jianyi Nie
- Department of Bioengineering, Rice University, 65000 Main St, Houston, TX, 77030, USA
| | - Michael T Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - David Yu Zhang
- Department of Bioengineering, Rice University, 65000 Main St, Houston, TX, 77030, USA.
- Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Srinivasan S, Kalinava N, Aldana R, Li Z, van Hagen S, Rodenburg SYA, Wind-Rotolo M, Qian X, Sasson AS, Tang H, Kirov S. Misannotated Multi-Nucleotide Variants in Public Cancer Genomics Datasets Lead to Inaccurate Mutation Calls with Significant Implications. Cancer Res 2020; 81:282-288. [PMID: 33115802 DOI: 10.1158/0008-5472.can-20-2151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Although next-generation sequencing is widely used in cancer to profile tumors and detect variants, most somatic variant callers used in these pipelines identify variants at the lowest possible granularity, single-nucleotide variants (SNV). As a result, multiple adjacent SNVs are called individually instead of as a multi-nucleotide variants (MNV). With this approach, the amino acid change from the individual SNV within a codon could be different from the amino acid change based on the MNV that results from combining SNV, leading to incorrect conclusions about the downstream effects of the variants. Here, we analyzed 10,383 variant call files (VCF) from the Cancer Genome Atlas (TCGA) and found 12,141 incorrectly annotated MNVs. Analysis of seven commonly mutated genes from 178 studies in cBioPortal revealed that MNVs were consistently missed in 20 of these studies, whereas they were correctly annotated in 15 more recent studies. At the BRAF V600 locus, the most common example of MNV, several public datasets reported separate BRAF V600E and BRAF V600M variants instead of a single merged V600K variant. VCFs from the TCGA Mutect2 caller were used to develop a solution to merge SNV to MNV. Our custom script used the phasing information from the SNV VCF and determined whether SNVs were at the same codon and needed to be merged into MNV before variant annotation. This study shows that institutions performing NGS sequencing for cancer genomics should incorporate the step of merging MNV as a best practice in their pipelines. SIGNIFICANCE: Identification of incorrect mutation calls in TCGA, including clinically relevant BRAF V600 and KRAS G12, will influence research and potentially clinical decisions.
Collapse
Affiliation(s)
- Sujaya Srinivasan
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Natallia Kalinava
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | | | - Zhipan Li
- Sentieon Inc., Mountain View, California
| | | | | | | | - Xiaozhong Qian
- Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey.,Translational Sciences, Daichi Sankyo, Basking Ridge, New Jersey
| | - Ariella S Sasson
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Hao Tang
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Stefan Kirov
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey.
| |
Collapse
|
4
|
Giunta EF, De Falco V, Napolitano S, Argenziano G, Brancaccio G, Moscarella E, Ciardiello D, Ciardiello F, Troiani T. Optimal treatment strategy for metastatic melanoma patients harboring BRAF-V600 mutations. Ther Adv Med Oncol 2020; 12:1758835920925219. [PMID: 32612709 PMCID: PMC7307282 DOI: 10.1177/1758835920925219] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
BRAF-V600 mutations occur in approximately 50% of patients with
metastatic melanoma. Immune-checkpoint inhibitors and targeted therapies are
both active as first-line treatments in these patients regardless of their
mechanisms of action and toxicities. However, an upfront therapeutic strategy is
still controversial. In fact, waiting for results of ongoing clinical trials and
for new biomarkers, clinicians should base their decision on the clinical
characteristics of the patient and on the biological aspects of the tumor. This
review provides an overview on BRAF-V600 mutations in melanoma
and will discuss their prognostic and clinical significance. Moreover, it will
suggest a therapeutic algorithm that can drive therapeutic choice in a
first-line setting for BRAF-V600 mutant melanoma patients.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo De Falco
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Argenziano
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Brancaccio
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Elvira Moscarella
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Davide Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Troiani
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Via S Pansini 5, Naples 80131, Italy
| |
Collapse
|