Abstract
The intraoperative dosing of opioids is a challenge in routine anesthesia as the potential effects of intraoperative overdosing and underdosing are not completely understood. In recent years an increasing number of monitors were approved, which were developed for the detection of intraoperative nociception and therefore should enable a better control of opioid titration. The nociception monitoring devices use either continuous hemodynamic, galvanic or thermal biosignals reflecting the balance between parasympathetic and sympathetic activity, measure the pupil dilatation reflex or the nociceptive flexor reflex as a reflexive response to application of standardized nociceptive stimulation. This review article presents the currently available nociception monitors. Most of these monitoring devices detect nociceptive stimulations with higher sensitivity and specificity than changes in heart rate, blood pressure or sedation depth monitoring devices. There are only few studies on the effect of opioid titration guided by nociception monitoring and the possible postoperative benefits of these devices. All nociception monitoring techniques are subject to specific limitations either due to perioperative confounders (e.g. hypovolemia) or special accompanying medical conditions (e.g. muscle relaxation). There is an ongoing discussion about the clinical relevance of nociceptive stimulation in general anesthesia and the effect on patient outcome. Initial results for individual monitor systems show a reduction in opioid consumption and in postoperative pain level. Nevertheless, current evidence does not enable the routine use of nociception monitoring devices to be recommended as a clear beneficial effect on long-term outcome has not yet been proven.
Collapse