1
|
Goldsmith M, Barad S, Knafo M, Savidor A, Ben-Dor S, Brandis A, Mehlman T, Peleg Y, Albeck S, Dym O, Ben-Zeev E, Barbole RS, Aharoni A, Reich Z. Identification and characterization of the key enzyme in the biosynthesis of the neurotoxin β-ODAP in grass pea. J Biol Chem 2022; 298:101806. [PMID: 35271851 PMCID: PMC9061259 DOI: 10.1016/j.jbc.2022.101806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with β-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme—β-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for β-ODAP production in vivo. The identification of BOS may pave the way toward engineering β-ODAP–free grass pea cultivars, which are safe for human and animal consumption.
Collapse
Affiliation(s)
- Moshe Goldsmith
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Shiri Barad
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maor Knafo
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alon Savidor
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shifra Ben-Dor
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander Brandis
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tevie Mehlman
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoav Peleg
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shira Albeck
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orly Dym
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Efrat Ben-Zeev
- Medicinal Chemistry Unit, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit S Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel; Plant Molecular Biology Unit, Division of Biochemical Sciences, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ziv Reich
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
2
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|