Pavlova N, Penchovsky R. Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets.
Antibiotics (Basel) 2022;
11:antibiotics11091177. [PMID:
36139956 PMCID:
PMC9495176 DOI:
10.3390/antibiotics11091177]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance (AR) is an acute problem that results in prolonged and debilitating illnesses. AR mortality worldwide is growing and causes a pressing need to research novel mechanisms of action and untested target molecules. This article presents in silico analyses of eight bacterial riboswitches for their suitability for antibacterial drug targets. Most bacterial riboswitches are located in the 5′-untranslated region of messenger RNAs, act as allosteric cis-acting gene control elements, and have not been found in humans before. Sensing metabolites, the riboswitches regulate the synthesis of vital cellular metabolites in various pathogenic bacteria. The analyses performed in this article represent a complete and informative genome-wide bioinformatics analysis of the adequacy of eight riboswitches as antibacterial drug targets in different pathogenic bacteria based on four criteria. Due to the ability of the riboswitch to control biosynthetic pathways and transport proteins of essential metabolites and the presence/absence of alternative biosynthetic pathways, we classified them into four groups based on their suitability for use as antibacterial drug targets guided by our in silico analyses. We concluded that some of them are promising targets for antibacterial drug discovery, such as the PreQ1, MoCo RNA, cyclic-di-GMP I, and cyclic-di-GMP II riboswitches.
Collapse