1
|
Arora T, Desai N, Kirshblum S, Chen R. Utility of transcranial magnetic stimulation in the assessment of spinal cord injury: Current status and future directions. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1005111. [PMID: 36275924 PMCID: PMC9581184 DOI: 10.3389/fresc.2022.1005111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Comprehensive assessment following traumatic spinal cord injury (SCI) is needed to improve prognostication, advance the understanding of the neurophysiology and better targeting of clinical interventions. The International Standards for Neurological Classification of Spinal Cord Injury is the most common clinical examination recommended for use after a SCI. In addition, there are over 30 clinical assessment tools spanning across different domains of the International Classification of Functioning, Disability, and Health that have been validated and recommended for use in SCI. Most of these tools are subjective in nature, have limited value in predicting neurologic recovery, and do not provide insights into neurophysiological mechanisms. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiology technique that can supplement the clinical assessment in the domain of body structure and function during acute and chronic stages of SCI. TMS offers a better insight into neurophysiology and help in better detection of residual corticomotor connectivity following SCI compared to clinical assessment alone. TMS-based motor evoked potential and silent period duration allow study of excitatory and inhibitory mechanisms following SCI. Changes in muscle representations in form of displacement of TMS-based motor map center of gravity or changes in the map area can capture neuroplastic changes resulting from SCI or following rehabilitation. Paired-pulse TMS measures help understand the compensatory reorganization of the cortical circuits following SCI. In combination with peripheral stimulation, TMS can be used to study central motor conduction time and modulation of spinal reflexes, which can be used for advanced diagnostic and treatment purposes. To strengthen the utility of TMS in SCI assessment, future studies will need to standardize the assessment protocols, address population-specific concerns, and establish the psychometric properties of TMS-based measurements in the SCI population.
Collapse
Affiliation(s)
- Tarun Arora
- Krembil Research Institute, University Health Network, Toronto, ON, Canada,Correspondence: Tarun Arora Robert Chen
| | - Naaz Desai
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Steven Kirshblum
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States,Kessler Institute for Rehabilitation, West Orange, NJ, United States,Kessler Foundation, West Orange, NJ, United States,Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada,Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada,Division of Neurology, University of Toronto, Toronto, ON, Canada,Correspondence: Tarun Arora Robert Chen
| |
Collapse
|
2
|
Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS. Brain Res 2021; 1771:147657. [PMID: 34509460 DOI: 10.1016/j.brainres.2021.147657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Sensorimotor integration can be assessed by pairing electrical peripheral nerve stimulation with transcranial magnetic stimulation (TMS). The resulting afferent inhibition is observed when TMS precedes nerve stimulation by ∼ 20-25 ms, termed short-latency afferent inhibition (SAI), or by 200 ms, termed long-latency afferent inhibition (LAI). The purpose of this study was to determine whether biological sex influences the magnitude of SAI or LAI. SAI and LAI were assessed in fifteen males (21.5 ± 2.7 years) and fifteen females (20.2 ± 2.3 years). TMS was delivered to the primary motor cortex (M1) following stimulation of the contralateral median nerve at the wrist or digital nerve of the index finger, and motor-evoked potentials (MEPs) were obtained from the right first dorsal interosseous (FDI) muscle. SAI evoked by median and digital nerve stimulation, and LAI evoked by median nerve stimulation, were not different between males and females. LAI evoked by digital nerve stimulation was increased in females compared to males, but this difference between sexes was no longer present following the removal of datapoints where inhibition was not observed. This study is the first to investigate biological sex differences in afferent inhibition.
Collapse
|
3
|
Topkan TA, Altin E, Kocer B, Cengiz B. Cortical plasticity causes useless hand syndrome in multiple sclerosis: a neurophysiological study in a rare case. Somatosens Mot Res 2021; 39:18-20. [PMID: 34632929 DOI: 10.1080/08990220.2021.1986384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Useless Hand Syndrome (UHS) is a rare clinical manifestation of an upper cervical cord lesion, which is most commonly associated with multiple sclerosis (MS). The pathophysiological mechanism underlying UHS remains unclear. CASE We report a 25-year-old woman, who described numbness in her left upper extremity. Cervical magnetic resonance imaging revealed a posterior upper cervical cord lesion. There was no cortical lesion that could explain the clinical findings. We measured (1) short-latency afferent inhibition (SAI) by obtaining motor evoked potentials as an indicator of sensorimotor integration and (2) somatosensorial temporal discrimination threshold (STDT) to display central somatosensory pathway function. In the right cerebral hemisphere, we found an excessive increase in STDT and no inhibition in the SAI paradigm. CONCLUSIONS These findings indicate that impairment of sensorimotor integration and central processing of sensory stimuli cause useless hand syndrome.
Collapse
Affiliation(s)
| | - Emine Altin
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Belgin Kocer
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
5
|
Reliability of transcranial magnetic stimulation measures of afferent inhibition. Brain Res 2019; 1723:146394. [DOI: 10.1016/j.brainres.2019.146394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
|
6
|
Turco CV, El-Sayes J, Locke MB, Chen R, Baker S, Nelson AJ. Effects of lorazepam and baclofen on short- and long-latency afferent inhibition. J Physiol 2018; 596:5267-5280. [PMID: 30192388 DOI: 10.1113/jp276710] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Short-latency afferent inhibition (SAI) is modulated by GABAA receptor activity, whereas the pharmacological origin of long-latency afferent inhibition remains unknown. This is the first study to report that long-latency afferent inhibition (LAI) is reduced by the GABAA positive allosteric modulator lorazepam, and that both SAI and LAI are not modulated by the GABAB agonist baclofen. These findings advance our understanding of the neural mechanisms underlying afferent inhibition. ABSTRACT The afferent volley evoked by peripheral nerve stimulation has an inhibitory influence on transcranial magnetic stimulation induced motor evoked potentials. This phenomenon, known as afferent inhibition, occurs in two phases: short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI). SAI exerts its inhibitory influence via cholinergic and GABAergic activity. The neurotransmitter receptors that mediate LAI remain unclear. The present study aimed to determine whether LAI is contributed by GABAA and/or GABAB receptor activity. In a double-blinded, placebo-controlled study, 2.5 mg of lorazepam (GABAA agonist), 20 mg of baclofen (GABAB agonist) and placebo were administered to 14 males (mean age 22.7 ± 1.9 years) in three separate sessions. SAI and LAI, evoked by stimulation of the median nerve and recorded from the first dorsal interosseous muscle, were quantified before and at the peak plasma concentration following drug ingestion. Results indicate that lorazepam reduced LAI by ∼40% and, in support of previous work, reduced SAI by ∼19%. However, neither SAI, nor LAI were altered by baclofen. In a follow-up double-blinded, placebo-controlled study, 10 returning participants received placebo or 40 mg of baclofen (double the dosage used in Experiment 1). The results obtained indicate that SAI and LAI were unchanged by baclofen. This is the first study to show that LAI is modulated by GABAA receptor activity, similar to SAI, and that afferent inhibition does not appear to be a GABAB mediated process.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jenin El-Sayes
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Mitchell B Locke
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Steven Baker
- Division of Physical Medicine and Rehabilitation, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Exploring Behavioral Correlates of Afferent Inhibition. Brain Sci 2018; 8:brainsci8040064. [PMID: 29641439 PMCID: PMC5924400 DOI: 10.3390/brainsci8040064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Afferent inhibition is the attenuation of the muscle response evoked from transcranial magnetic stimulation (TMS) by a prior conditioning electrical stimulus to a peripheral nerve. It is unclear whether the magnitude of afferent inhibition relates to sensation and movement; (2) Methods: 24 healthy, young adults were tested. Short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) were obtained following median and digital nerve stimulation. Temporal tactile acuity was assessed with a temporal order judgement (TOJ) task, spatial tactile acuity was assessed using a grating orientation task (GOT), and fine manual dexterity was assessed with the Pegboard task; (3) Results: Correlation analyses revealed no association between the magnitude of SAI or LAI with performance on the TOJ, GOT, or Pegboard tasks; (4) Conclusion: The magnitude of SAI and LAI does not relate to performance on the sensory and motor tasks tested. Future studies are needed to better understand whether the afferent inhibition phenomenon relates to human behavior.
Collapse
|
8
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
9
|
Lei Y, Perez MA. Phase-dependent deficits during reach-to-grasp after human spinal cord injury. J Neurophysiol 2017; 119:251-261. [PMID: 28931614 DOI: 10.1152/jn.00542.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most cervical spinal cord injuries result in asymmetrical functional impairments in hand and arm function. However, the extent to which reach-to-grasp movements are affected in humans with incomplete cervical spinal cord injury (SCI) remains poorly understood. Using kinematics and electromyographic (EMG) recordings in hand and arm muscles we studied the different phases of unilateral self-paced reach-to-grasp movements (arm acceleration, hand opening and closing) to a small cylinder in the more and less affected arms of individuals with cervical SCI and in age-matched controls. We found that SCI subjects showed prolonged movement duration in both arms during arm acceleration, and hand opening and closing compared with controls. Notably, the more affected arm showed an additional increase in movement duration at the time to close the hand compared with the less affected arm. Also, the time at which the index finger and thumb contacted the object and the variability of finger movement trajectory were increased in the more compared with the less affected arm of SCI participants. Participants with prolonged movement duration during hand closing were those with more pronounced deficits in sensory function. The muscle activation ratio between the first dorsal interosseous and abductor pollicis brevis muscles decreased during hand closing in the more compared with the less affected arm of SCI participants. Our results suggest that deficits in movement kinematics during reach-to-grasp movements are more pronounced at the time to close the hand in the more affected arm of SCI participants, likely related to deficits in EMG muscle activation and sensory function. NEW & NOTEWORTHY Humans with cervical spinal cord injury usually present asymmetrical functional impairments in hand and arm function. Here, we demonstrate for the first time that deficits in movement kinematics during reaching and grasping movements are more pronounced at the time to close the hand in the more affected arm of spinal cord injury. We suggest that this is in part related to deficits in muscle activation ratios between hand muscles and a decrease in sensory function.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
10
|
Ozdemir RA, Perez MA. Afferent input and sensory function after human spinal cord injury. J Neurophysiol 2017; 119:134-144. [PMID: 28701541 DOI: 10.1152/jn.00354.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) often disrupts the integrity of afferent (sensory) axons projecting through the spinal cord dorsal columns to the brain. Examinations of ascending sensory tracts, therefore, are critical for monitoring the extent of SCI and recovery processes. In this review, we discuss the most common electrophysiological techniques used to assess transmission of afferent inputs to the primary motor cortex (i.e., afferent input-induced facilitation and inhibition) and the somatosensory cortex [i.e., somatosensory evoked potentials (SSEPs), dermatomal SSEPs, and electrical perceptual thresholds] following human SCI. We discuss how afferent input modulates corticospinal excitability by involving cortical and spinal mechanisms depending on the timing of the effects, which need to be considered separately for upper and lower limb muscles. We argue that the time of arrival of afferent input onto the sensory and motor cortex is critical to consider in plasticity-induced protocols in humans with SCI. We also discuss how current sensory exams have been used to detect differences between control and SCI participants but might be less optimal to characterize the level and severity of injury. There is a need to conduct some of these electrophysiological examinations during functionally relevant behaviors to understand the contribution of impaired afferent inputs to the control, or lack of control, of movement. Thus the effects of transmission of afferent inputs to the brain need to be considered on multiple functions following human SCI.
Collapse
Affiliation(s)
- Recep A Ozdemir
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami , Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami , Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
11
|
Physical activity levels determine exercise-induced changes in brain excitability. PLoS One 2017; 12:e0173672. [PMID: 28278300 PMCID: PMC5344515 DOI: 10.1371/journal.pone.0173672] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/25/2017] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that regular physical activity can impact cortical function and facilitate plasticity. In the present study, we examined how physical activity levels influence corticospinal excitability and intracortical circuitry in motor cortex following a single session of moderate intensity aerobic exercise. We aimed to determine whether exercise-induced short-term plasticity differed between high versus low physically active individuals. Participants included twenty-eight young, healthy adults divided into two equal groups based on physical activity level determined by the International Physical Activity Questionnaire: low-to-moderate (LOW) and high (HIGH) physical activity. Transcranial magnetic stimulation was used to assess motor cortex excitability via motor evoked potential (MEP) recruitment curves for the first dorsal interosseous (FDI) muscle at rest (MEPREST) and during tonic contraction (MEPACTIVE), short-interval intracortical inhibition (SICI) and facilitation (SICF), and intracortical facilitation (ICF). All dependent measures were obtained in the resting FDI muscle, with the exception of AMT and MEPACTIVE recruitment curves that were obtained during tonic FDI contraction. Dependent measures were acquired before and following moderate intensity aerobic exercise (20 mins, ~60% of the age-predicted maximal heart rate) performed on a recumbent cycle ergometer. Results indicate that MEPREST recruitment curve amplitudes and area under the recruitment curve (AURC) were increased following exercise in the HIGH group only (p = 0.002 and p = 0.044, respectively). SICI and ICF were reduced following exercise irrespective of physical activity level (p = 0.007 and p = 0.04, respectively). MEPACTIVE recruitment curves and SICF were unaltered by exercise. These findings indicate that the propensity for exercise-induced plasticity is different in high versus low physically active individuals. Additionally, these data highlight that a single session of aerobic exercise can transiently reduce inhibition in the motor cortex regardless of physical activity level, potentially priming the system for plasticity induction.
Collapse
|