1
|
Vander Meersche Y, Cretin G, Gheeraert A, Gelly JC, Galochkina T. ATLAS: protein flexibility description from atomistic molecular dynamics simulations. Nucleic Acids Res 2024; 52:D384-D392. [PMID: 37986215 PMCID: PMC10767941 DOI: 10.1093/nar/gkad1084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Dynamical behaviour is one of the most crucial protein characteristics. Despite the advances in the field of protein structure resolution and prediction, analysis and prediction of protein dynamic properties remains a major challenge, mostly due to the low accessibility of data and its diversity and heterogeneity. To address this issue, we present ATLAS, a database of standardised all-atom molecular dynamics simulations, accompanied by their analysis in the form of interactive diagrams and trajectory visualisation. ATLAS offers a large-scale view and valuable insights on protein dynamics for a large and representative set of proteins, by combining data obtained through molecular dynamics simulations with information extracted from experimental structures. Users can easily analyse dynamic properties of functional protein regions, such as domain limits (hinge positions) and residues involved in interaction with other biological molecules. Additionally, the database enables exploration of proteins with uncommon dynamic properties conditioned by their environment such as chameleon subsequences and Dual Personality Fragments. The ATLAS database is freely available at https://www.dsimb.inserm.fr/ATLAS.
Collapse
Affiliation(s)
- Yann Vander Meersche
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Gabriel Cretin
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Aria Gheeraert
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Jean-Christophe Gelly
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| |
Collapse
|
2
|
Carugo O. B-factor accuracy in protein crystal structures. Acta Crystallogr D Struct Biol 2022; 78:69-74. [PMID: 34981763 PMCID: PMC8725162 DOI: 10.1107/s2059798321011736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
The accuracy of B factors in protein crystal structures has been determined by comparing the same atoms in numerous, independent crystal structures of Gallus gallus lysozyme. Both B-factor absolute differences and normal probability plots indicate that the estimated B-factor errors are quite large, close to 9 Å2 in ambient-temperature structures and to 6 Å2 in low-temperature structures, and surprisingly are comparable to values estimated two decades ago. It is well known that B factors are not due to local movements only but reflect several, additional factors from crystal defects, large-scale disorder, diffraction data quality etc. It therefore remains essential to normalize B factors when comparing different crystal structures, although it has clearly been shown that they provide useful information about protein dynamics. Improved, quantitative analyses of raw B factors require novel experimental and computational tools that are able to disaggregate local movements from other features and properties that affect B factors.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
- Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| |
Collapse
|
3
|
Parkhurst JM, Dumoux M, Basham M, Clare D, Siebert CA, Varslot T, Kirkland A, Naismith JH, Evans G. Parakeet: a digital twin software pipeline to assess the impact of experimental parameters on tomographic reconstructions for cryo-electron tomography. Open Biol 2021; 11:210160. [PMID: 34699732 PMCID: PMC8548082 DOI: 10.1098/rsob.210160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In cryo-electron tomography (cryo-ET) of biological samples, the quality of tomographic reconstructions can vary depending on the transmission electron microscope (TEM) instrument and data acquisition parameters. In this paper, we present Parakeet, a 'digital twin' software pipeline for the assessment of the impact of various TEM experiment parameters on the quality of three-dimensional tomographic reconstructions. The Parakeet digital twin is a digital model that can be used to optimize the performance and utilization of a physical instrument to enable in silico optimization of sample geometries, data acquisition schemes and instrument parameters. The digital twin performs virtual sample generation, TEM image simulation, and tilt series reconstruction and analysis within a convenient software framework. As well as being able to produce physically realistic simulated cryo-ET datasets to aid the development of tomographic reconstruction and subtomogram averaging programs, Parakeet aims to enable convenient assessment of the effects of different microscope parameters and data acquisition parameters on reconstruction quality. To illustrate the use of the software, we present the example of a quantitative analysis of missing wedge artefacts on simulated planar and cylindrical biological samples and discuss how data collection parameters can be modified for cylindrical samples where a full 180° tilt range might be measured.
Collapse
Affiliation(s)
- James M. Parkhurst
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Maud Dumoux
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Mark Basham
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Daniel Clare
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - C. Alistair Siebert
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Trond Varslot
- Thermo Fisher Scientific, Vlastimila Pecha, Brno, Czech Republic
| | - Angus Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK,Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| | - James H. Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Gwyndaf Evans
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
4
|
Ronayne EK, Peters SC, Gish JS, Wilson C, Spencer HT, Doering CB, Lollar P, Spiegel PC, Childers KC. Structure of Blood Coagulation Factor VIII in Complex With an Anti-C2 Domain Non-Classical, Pathogenic Antibody Inhibitor. Front Immunol 2021; 12:697602. [PMID: 34177966 PMCID: PMC8223065 DOI: 10.3389/fimmu.2021.697602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023] Open
Abstract
Factor VIII (fVIII) is a procoagulant protein that binds to activated factor IX (fIXa) on platelet surfaces to form the intrinsic tenase complex. Due to the high immunogenicity of fVIII, generation of antibody inhibitors is a common occurrence in patients during hemophilia A treatment and spontaneously occurs in acquired hemophilia A patients. Non-classical antibody inhibitors, which block fVIII activation by thrombin and formation of the tenase complex, are the most common anti-C2 domain pathogenic inhibitors in hemophilia A murine models and have been identified in patient plasmas. In this study, we report on the X-ray crystal structure of a B domain-deleted bioengineered fVIII bound to the non-classical antibody inhibitor, G99. While binding to G99 does not disrupt the overall domain architecture of fVIII, the C2 domain undergoes an ~8 Å translocation that is concomitant with breaking multiple domain-domain interactions. Analysis of normalized B-factor values revealed several solvent-exposed loops in the C1 and C2 domains which experience a decrease in thermal motion in the presence of inhibitory antibodies. These results enhance our understanding on the structural nature of binding non-classical inhibitors and provide a structural dynamics-based rationale for cooperativity between anti-C1 and anti-C2 domain inhibitors.
Collapse
Affiliation(s)
- Estelle K Ronayne
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Shaun C Peters
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Joseph S Gish
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Celena Wilson
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - H Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - P Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Kenneth C Childers
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
5
|
Carugo O. Globular protein backbone conformational disorder in crystal structures. Amino Acids 2018; 51:475-481. [PMID: 30515566 DOI: 10.1007/s00726-018-2683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/24/2018] [Indexed: 11/25/2022]
Abstract
Proteins are not static molecules but dynamic entities able to modify their structure for several reasons, from the necessity to recognize partners to the regulation of their thermodynamic stability. Conformational disorder is frequent in protein structures and atoms can have, in protein crystal structures, two or more alternative, equilibrium positions close to each other. Here, a set of protein crystal structures refined at very high resolution (1 Å or better) is examined to characterize the conformational disorder of the backbone atoms, which is not infrequent: about 15% of the protein backbone atoms are conformationally disordered and three quarters of them have been deposited with two or more equilibrium positions (most of the others were not detected in the electron density maps). Several structural features have been examined and it was observed that Cα atoms tend to be disordered more frequently than the other backbone atoms, likely because their disorder is induced by disordered side chains: side-chain disorder is two times more frequent than backbone disorder. Surprisingly, backbone disorder is only slightly more frequent in loops than in helices and strands and this is in agreement with the observation that backbone disorder is a localized phenomenon: in about 80% of the cases, it is observed in one amino acid and not in its neighbors. However, although backbone disorder does not cluster along the polypeptide sequence, it tends to cluster in 3D, since backbone-disordered amino acids distant in sequence are close in the 3D space.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
- Department of Structural and Computational Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|