1
|
Drwęska J, Formalik F, Roztocki K, Snurr RQ, Barbour LJ, Janiak AM. Unveiling Temperature-Induced Structural Phase Transformations and CO 2 Binding Sites in CALF-20. Inorg Chem 2024; 63:19277-19286. [PMID: 39331378 PMCID: PMC11483831 DOI: 10.1021/acs.inorgchem.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
The increase in atmospheric carbon dioxide concentration linked to climate change has created a need for new sorbents capable of separating CO2 from exhaust gases. Recently, an easily produced metal-organic framework, CALF-20, was shown to withstand over 450,000 adsorption/desorption cycles in steam and wet acid gases. Further development and industrial application of such materials require an understanding of the observed processes. Herein, we demonstrate that conditioning as-synthesized CALF-20 single crystal transforms it into a different phase, γ-CALF-20. The transformation resulted in significant structural changes, including the binding of water molecules to Zn(II), accompanied by a reduction of 9% in the unit cell volume. Our experimental findings were supported by the energy-volume dependence of CALF-20 in the presence and absence of water molecules calculated from density functional theory. We have also monitored the sorption process of the dominant greenhouse gas, CO2, on the initial phase of CALF-20 at atomic resolution using in situ single-crystal X-ray diffraction under specific pressure. The new understanding of CALF-20 chemistry from these studies should facilitate development of novel sorbents for gas adsorption technologies.
Collapse
Affiliation(s)
- Joanna Drwęska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Filip Formalik
- Department
of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kornel Roztocki
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Randall Q. Snurr
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Leonard J. Barbour
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag
X1, Matieland 7602, South Africa
| | - Agnieszka M. Janiak
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Svensson Grape E, Davenport AM, Brozek CK. Dynamic metal-linker bonds in metal-organic frameworks. Dalton Trans 2024; 53:1935-1941. [PMID: 38226850 DOI: 10.1039/d3dt04164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-linker bonds serve as the "glue" that binds metal ions to multitopic organic ligands in the porous materials known as metal-organic frameworks (MOFs). Despite ample evidence of bond lability in molecular and polymeric coordination compounds, the metal-linker bonds of MOFs were long assumed to be rigid and static. Given the importance of ligand fields in determining the behaviour of metal species, labile bonding in MOFs would help explain outstanding questions about MOF behaviour, while providing a design tool for controlling dynamic and stimuli-responsive optoelectronic, magnetic, catalytic, and mechanical phenomena. Here, we present emerging evidence that MOF metal-linker bonds exist in dynamic equilibria between weakly and tightly bond conformations, and that these equilibria respond to guest-host chemistry, drive phase change behavior, and exhibit size-dependence in MOF nanoparticles.
Collapse
Affiliation(s)
- Erik Svensson Grape
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR 97403, USA.
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR 97403, USA.
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
3
|
Hoffman AJ, Temmerman W, Campbell E, Damin AA, Lezcano-Gonzalez I, Beale AM, Bordiga S, Hofkens J, Van Speybroeck V. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. J Chem Theory Comput 2024; 20:513-531. [PMID: 38157404 PMCID: PMC10809426 DOI: 10.1021/acs.jctc.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.
Collapse
Affiliation(s)
| | - Wim Temmerman
- Center
for Molecular Modeling, Ghent University, 9000 Ghent, Belgium
| | - Emma Campbell
- Cardiff
Catalysis Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
| | | | - Ines Lezcano-Gonzalez
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Andrew M. Beale
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Silvia Bordiga
- Department
of Chemistry, University of Turin, 10124 Turin, Italy
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3000 Leuven, Belgium
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
4
|
Purtscher FS, Christanell L, Schulte M, Seiwald S, Rödl M, Ober I, Maruschka LK, Khoder H, Schwartz HA, Bendeif EE, Hofer TS. Structural Properties of Metal-Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:1560-1575. [PMID: 36721770 PMCID: PMC9884096 DOI: 10.1021/acs.jpcc.2c05103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The performance of different density functional tight binding (DFTB) methods for the description of six increasingly complex metal-organic framework (MOF) compounds have been assessed. In particular the self-consistent charge density functional tight binding (SCC DFTB) approach utilizing the 3ob and matsci parameter sets have been considered for a set of four Zn-based and two Al-based MOF systems. Moreover, the extended tight binding for geometries, frequencies, and noncovalent interactions (GFN2-xTB) approach has been considered as well. In addition to the application of energy minimizations of the respective unit cells, molecular dynamics (MD) simulations at constant temperature and pressure conditions (298.15 K, 1.013 bar) have been carried out to assess the performance of the different DFTB methods at nonzero thermal conditions. In order to obtain the XRD patterns from the MD simulations, a flexible workflow to obtain time-averaged XRD patterns from (in this study 5000) individual snapshots taken at regular intervals over the simulation trajectory has been applied. In addition, the comparison of pair-distribution functions (PDFs) directly accessible from the simulation data shows very good agreement with experimental reference data obtained via measurements employing synchrotron radiation in case of MOF-5. The comparison of the lattice constants and the associated X-ray diffraction (XRD) patterns with the experimental reference data demonstrate, that the SCC DFTB approach provides a highly efficient and accurate description of the target systems.
Collapse
Affiliation(s)
- Felix
R. S. Purtscher
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - Leo Christanell
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - Moritz Schulte
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - Stefan Seiwald
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - Markus Rödl
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - Isabell Ober
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - Leah K. Maruschka
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - Hassan Khoder
- CRM2
UMR, CNRS 7036, Université de Lorraine, F-54000Vandæuvre-lès-Nancy, France
| | - Heidi A. Schwartz
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| | - El-Eulmi Bendeif
- CRM2
UMR, CNRS 7036, Université de Lorraine, F-54000Vandæuvre-lès-Nancy, France
| | - Thomas S. Hofer
- Institute
of General, Inorganic, and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020Innsbruck, Austria
| |
Collapse
|
5
|
Gutiérrez M, Zhang Y, Tan JC. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem Rev 2022; 122:10438-10483. [PMID: 35427119 PMCID: PMC9185685 DOI: 10.1021/acs.chemrev.1c00980] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/27/2022]
Abstract
This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Yang Zhang
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
6
|
Donà L, Brandenburg JG, Civalleri B. Metal-Organic Frameworks Properties from Hybrid Density Functional Approximations. J Chem Phys 2022; 156:094706. [DOI: 10.1063/5.0080359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lorenzo Donà
- Università degli Studi di Torino, Department of Chemistry, Italy
| | | | | |
Collapse
|
7
|
Krylov A, Yushina I, Slyusareva E, Krylova S, Vtyurin A, Kaskel S, Senkovska I. Structural phase transitions in flexible DUT-8(Ni) under high hydrostatic pressure. Phys Chem Chem Phys 2022; 24:3788-3798. [PMID: 35084013 DOI: 10.1039/d1cp05021d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The behaviours of the open pore (op) and closed pore (cp) phases of the flexible Ni2(ndc)2(dabco) (ndc - 2,6-naphthalene dicarboxylate, dabco - 1,4-diazabicyclo[2.2.2]octane, DUT-8(Ni)) metal-organic framework under high hydrostatic pressures up to 10 GPa in isopropanol and silicone oil were studied by Raman spectroscopy. Ab initio simulations of vibrational spectra were performed for the open and closed pore phases, which allowed us to disclose the characteristic vibrational modes affected by the structural transitions under pressure. Analysis of theoretical and experimental Raman data suggests that the op-cp transition involves gateway vibrations at 25 and 67 cm-1, corresponding to trampoline/rotational motions of aromatic linkers. The experiments reveal the formation of new distorted cp phases at pressures higher than 2 GPa, which are formed without amorphisation. The transition between the cp phase and the distorted cp phase is reversible. The experiments also reveal the pivotal role of the pressure transmitting medium on the phase transition behaviour.
Collapse
Affiliation(s)
- Alexander Krylov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia.
| | - Irina Yushina
- South Ural State University, SEC Nahenotechnology, 454080, Lenin Avenue, 76, Chelyabinsk, Russia
| | - Evgenia Slyusareva
- Siberian Federal University, Svobodny Prospect 79, 660041 Krasnoyarsk, Russia
| | - Svetlana Krylova
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia.
| | - Alexander Vtyurin
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia. .,Siberian Federal University, Svobodny Prospect 79, 660041 Krasnoyarsk, Russia
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| |
Collapse
|
8
|
Abstract
Many of the proposed applications of metal-organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the 'time gap' in the literature - that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.
Collapse
|
9
|
Lamaire A, Wieme J, Hoffman AEJ, Van Speybroeck V. Atomistic insight in the flexibility and heat transport properties of the stimuli-responsive metal–organic framework MIL-53(Al) for water-adsorption applications using molecular simulations. Faraday Discuss 2021; 225:301-323. [DOI: 10.1039/d0fd00025f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insight into the heat transport and water-adsorption properties of the flexible MIL-53(Al) is obtained using advanced molecular dynamics simulations.
Collapse
Affiliation(s)
- Aran Lamaire
- Center for Molecular Modeling
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | - Jelle Wieme
- Center for Molecular Modeling
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | | | | |
Collapse
|
10
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
11
|
Andreeva AB, Le KN, Chen L, Kellman ME, Hendon CH, Brozek CK. Soft Mode Metal-Linker Dynamics in Carboxylate MOFs Evidenced by Variable-Temperature Infrared Spectroscopy. J Am Chem Soc 2020; 142:19291-19299. [DOI: 10.1021/jacs.0c09499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anastasia B. Andreeva
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Khoa N. Le
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lihaokun Chen
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael E. Kellman
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Christopher H. Hendon
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Carl K. Brozek
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
12
|
Formalik F, Neimark AV, Rogacka J, Firlej L, Kuchta B. Pore opening and breathing transitions in metal-organic frameworks: Coupling adsorption and deformation. J Colloid Interface Sci 2020; 578:77-88. [DOI: 10.1016/j.jcis.2020.05.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022]
|