1
|
Yu C, Huang J, Yang M, Zhang J. Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu 2. SENSORS (BASEL, SWITZERLAND) 2024; 24:3425. [PMID: 38894218 PMCID: PMC11174907 DOI: 10.3390/s24113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
A chitosan-based Cu2+ fluorescent probe was designed and synthesized independently using the C-2-amino group of chitosan with 1, 8-naphthalimide derivatives. A series of experiments were conducted to characterize the optical properties of the grafted probe. The fluorescence quenching effect was investigated based on the interactions between the probe and common metals. It was found that the proposed probe displayed selective interaction with Cu2+ over other metal ions and anions, reaching equilibrium within 5 min.
Collapse
Affiliation(s)
| | | | | | - Jun Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (C.Y.); (J.H.); (M.Y.)
| |
Collapse
|
2
|
Naphthalimide-Piperazine Derivatives as Multifunctional "On" and "Off" Fluorescent Switches for pH, Hg 2+ and Cu 2+ Ions. Molecules 2023; 28:molecules28031275. [PMID: 36770945 PMCID: PMC9918953 DOI: 10.3390/molecules28031275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Novel 1,8-naphthalimide-based fluorescent probes NI-1 and NI-2 were designed and screened for use as chemosensors for detection of heavy metal ions. Two moieties, methylpyridine (NI-1) and hydroxyphenyl (NI-2), were attached via piperazine at the C-4 position of the napthalimide core resulting in a notable effect on their spectroscopic properties. NI-1 and NI-2 are pH sensitive and show an increase in fluorescence intensity at around 525 nm (switch "on") in the acidic environment, with pKa values at 4.98 and 2.91, respectively. Amongst heavy metal ions only Cu2+ and Hg2+ had a significant effect on the spectroscopic properties. The fluorescence of NI-1 is quenched in the presence of either Cu2+ or Hg2+ which is attributed to the formation of 1:1 metal-ligand complexes with binding constants of 3.6 × 105 and 3.9 × 104, respectively. The NI-1 chemosensor can be used for the quantification of Cu2+ ions in sub-micromolar quantities, with a linear range from 250 nM to 4.0 μM and a detection limit of 1.5 × 10-8 M. The linear range for the determination of Hg2+ is from 2 μM to 10 μM, with a detection limit of 8.8 × 10-8 M. Conversely, NI-2 behaves like a typical photoinduced electron transfer (PET) sensor for Hg2+ ions. Here, the formation of a complex with Hg2+ (binding constant 8.3 × 103) turns the green fluorescence of NI-2 into the "on" state. NI-2 showed remarkable selectivity towards Hg2+ ions, allowing for determination of Hg2+ concentration over a linear range of 1.3 μM to 25 μM and a limit of detection of 4.1 × 10-7 M.
Collapse
|
3
|
Li K, Li R, Kong X, Shen Q, Wan T, Wu H. A highly selective and sensitive fluorescent sensor based on a 1,8-naphthalimide with a Schiff base function for Hg 2+ in aqueous media. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new fluorescent sensor, N-allyl-4-[(2-(3-methoxysalicylaldimino)ethylamino]-1,8-naphthalimide (HL), for Hg2+ has been developed where the Schiff base substituent acts as a recognition group. This sensor shows a large Stokes shift of 3535–4042 cm−1 and a general fluorescence quantum yield of 0.05, 249–0.11, 866 in organic solvents of different polarity as expected. It also exhibits highly selective and a sensitive response to Hg2+ (Ф
Hg+HL/Ф
HL = 2.28) over other metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Pb2+, Fe3+, Ni2+, Zn2+, Cu2+, Ag+, Co2+, Cr3+, Mn2+ and Cd2+) in solution (DMF/Tris-HCl buffer, 1:1, v/v, pH = 7.2). The Hg2+-induced fluorescence enhancement at 526 nm is proportional to the concentration of Hg2+ in the range of 0.5–4.0 µm with a detection limit of 0.18 µm. Based on the fluorescence titration and a Job’s plot analysis, the metal-to-ligand ratio of the complex is 2:1 with a binding constant of 1.56 × 1012 m
−1.
Collapse
Affiliation(s)
- Kaiyi Li
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Xiaoxia Kong
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Qinqin Shen
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| |
Collapse
|
4
|
Shen Q, Kong X, Li K, Wan T, Dong J, Wu H. A highly sensitive fluorescent 1,8‐naphthalimide Schiff base probe for detection of Hg
2+. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qinqin Shen
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Xiaoxia Kong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Kaiyi Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| |
Collapse
|
5
|
Revanna BN, Madegowda M, Neelufar, Rangaswamy J, Naik N. A novel Schiff base derivative as a fluorescent probe for selective detection of Cu2+ ions in buffered solution at pH 7.5: Experimental and quantum chemical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
A ratiometric fluorescence platform based on carbon dots for visual and rapid detection of copper(II) and fluoroquinolones. Mikrochim Acta 2022; 189:144. [PMID: 35292904 DOI: 10.1007/s00604-022-05243-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/22/2022] [Indexed: 10/25/2022]
Abstract
A simple smartphone-integrated ratiometric fluorescent sensing system for visual determination of copper ions (Cu2+) and fluoroquinolones (FQs) was developed based on carbon dots (CDs) which were synthesized through the high-temperature pyrolysis of citric acid. In this system, with the fluorescence resonance energy transfer effect between CDs and 2,3-diaminophenazine (oxOPD), the detection of Cu2+ and ciprofloxacin (CIP, an example for FQs) was realized. Cu2+ catalyzes the oxidation of OPD to form oxOPD with yellow fluorescence, resulting in the quenching of CDs. In addition, CIP can inhibit the catalytic activity of Cu2+ and induce the recovery of CDs fluorescence. Under the excitation of 400 nm, the changes of CDs fluorescence at 472 nm and oxOPD fluorescence at 556 nm were monitored. The detection results showed that the sensing system exhibited good selectivity and sensitivity to Cu2+ and CIP with the limit of detection of 2.32 × 10-8 mol L-1 and 0.2 ng mL-1, respectively. In addition, a smartphone was developed as a portable analyzer to capture the change of fluorescence color and quickly analyze the concentration of Cu2+ and CIP. The proposed smartphone-based sensing platform has satisfactory sensitivity, and it has application prospects for detecting Cu2+ and FQs in food safety monitoring.
Collapse
|
7
|
Li XH, Yan JL, Zong HT, Wu WN, Wang Y, Zhao XL, Fan YC, Xu ZH. A 1,8-naphthalimide-based turn-on fluorescent probe for imaging Cu2+ in lysosomes. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Dong J, Li R, Jiang Y, Sun F, Qu Y, Wu H. A one‐dimensional
Cd‐Eu
coordination polymer with open‐chain ether Schiff base ligand and 4,4′‐bipyridine: Synthesis, structure, luminescence property, and antioxidation activities. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu P.R. China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu P.R. China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu P.R. China
| | - Fugang Sun
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu P.R. China
| | - Yao Qu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu P.R. China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu P.R. China
| |
Collapse
|