1
|
Kulkarni AY, Karmakar G, Shah AY, Nigam S, Kumbhare G, Tyagi A, Butcher RJ, Chauhan RS, Kumar NN. Controlled synthesis of photoresponsive bismuthinite (Bi 2S 3) nanostructures mediated through a new 1D bismuth-pyrimidylthiolate coordination polymer as a molecular precursor. Dalton Trans 2023; 52:16224-16234. [PMID: 37853758 DOI: 10.1039/d3dt02143b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bismuthinite (Bi2S3) nanostructures have garnered significant interest due to their appealing photoresponsivity which has positioned them as an attractive choice for energy conversion applications. However, to utilize their full potential, a simple and economically viable method of preparation is highly desirable. Herein, we present the synthesis and characterization including structural elucidation of a new air- and moisture-stable bismuth-pyrimidylthiolate complex. This complex serves as an efficient single-source molecular precursor for the facile preparation of phase-pure Bi2S3 nanostructures. Powder X-ray diffraction (PXRD), Raman spectroscopy, electron dispersive spectroscopy (EDS) and electron microscopy techniques were used to assess the crystal structure, phase purity, elemental composition and morphology of the as-prepared nanostructures. This study also revealed the profound effects of temperature and growth duration on the crystallinity, phase formation and morphology of nanostructures. The optical band gap of the nanostructures was tuned within the range of 1.9-2.3 eV, which is blue shifted with respect to the bulk bandgap and suitable for photovoltaic applications. Liquid junction photo-electrochemical cells fabricated from the as-prepared Bi2S3 nanostructure exhibit efficient photoresponsivity and good photo-stability, which project them as promising candidates for alternative low-cost photon absorber materials.
Collapse
Affiliation(s)
- Atharva Yeshwant Kulkarni
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Alpa Y Shah
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Sandeep Nigam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Gayatri Kumbhare
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Raymond J Butcher
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - Rohit Singh Chauhan
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - N Naveen Kumar
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| |
Collapse
|
2
|
Molecular Structures of the Silicon Pyridine-2-(thi)olates Me3Si(pyX), Me2Si(pyX)2 and Ph2Si(pyX)2 (py = 2-Pyridyl, X = O, S), and Their Intra- and Intermolecular Ligand Exchange in Solution. CRYSTALS 2022. [DOI: 10.3390/cryst12081054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of pyridine-2-olates (pyO) and pyridine-2-thiolates (pyS) of silicon was studied in solid state and in solution. The crystal structures of Me3Si(pyO) (1a), Me3Si(pyS) (1b), Me2Si(pyO)2 (2a), Me2Si(pyS)2 (2b), Ph2Si(pyO)2 (3a) and Ph2Si(pyS)2 (3b) were determined by X-ray diffraction. For that purpose, crystals of the (at room temperature) liquid compounds 1a and 1b were grown in a capillary on the diffractometer. Compounds 1a, 1b, 2a, 2b and 3a feature tetracoordinate silicon atoms in the solid state, whereas 3b gave rise to a series of four crystal structures in which the Si atoms of this compound are hexacoordinate. Two isomers (3b1 with all-cis arrangement of the C2N2S2 donor atoms in P, and 3b2 with trans S-Si-S axis in P21/n) formed individual crystal batches, which allowed for their individual 29Si NMR spectroscopic study in the solid state (the determination of their chemical shift anisotropy tensors). Furthermore, the structures of a less stable modification of 3b2 (in C2/c) as well as a toluene solvate 3b2×(toluene) (in P) were determined. In CDCl3, the equimolar solutions of the corresponding pairs of pyO and pyS compounds (2a/2b and 3a/3b) showed substituent scrambling with the formation of the products Me2Si(pyO)(pyS) (2c) and Ph2Si(pyO)(pyS) (3c), respectively, as minor components in the respective substituent exchange equilibrium.
Collapse
|