1
|
Hsu KY, Majeed A, Ho CT, Pan MH. Bisdemethoxycurcumin and Curcumin Alleviate Inflammatory Bowel Disease by Maintaining Intestinal Epithelial Integrity and Regulating Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3494-3506. [PMID: 39873626 PMCID: PMC11826975 DOI: 10.1021/acs.jafc.4c11101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Curcuminoids, found in turmeric (Curcuma longa L.), include curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although CUR and DMC are well-studied, the anti-inflammatory effects of BDMC remain less explored. Recent studies highlight BDMC's stronger NF-κB inhibition compared to CUR and DMC in cell models, along with its ability to target pathways associated with inflammatory bowel disease (IBD) in DSS-induced colitis mice, reflected by lower disease activity scores and reduced inflammation. This study assessed CUR and BDMC in a DSS-induced colitis mouse model. Dietary administration of CUR or BDMC strengthened tight junction (TJ) proteins, reduced inflammatory cytokine secretion, and attenuated intestinal inflammatory protein expression, thereby alleviating DSS-induced IBD in mice. Furthermore, gut microbiota and short-chain fatty acid analyses revealed that CUR and BDMC effectively regulated gut microbial imbalance and promoted the relative abundance of butyrate-producing bacteria. Furthermore, CUR showed low absorption and was primarily excreted in feces, while BDMC had higher absorption levels. In conclusion, while both BDMC and CUR have potential as adjunct therapies for IBD, BDMC at a concentration of 0.1% showed strong anti-inflammatory effects and enhanced TJ proteins, suggesting that BDMC, even at lower concentrations than CUR, holds promising therapeutic potential and prospects.
Collapse
Affiliation(s)
- Kai-Yu Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Anju Majeed
- Sami-Sabinsa
Group Limited, Bengaluru, Karnataka 560058, India
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick New Jersey 08901 United States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Appell C, Jiwan NC, Shen CL, Luk HY. Curcumin Mitigates Muscle Atrophy Potentially by Attenuating Calcium Signaling and Inflammation in a Spinal Nerve Ligation Model. Curr Issues Mol Biol 2024; 46:12497-12511. [PMID: 39590336 PMCID: PMC11592774 DOI: 10.3390/cimb46110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine the effect of curcumin or bisdemethoxycurcumin on CaMKII activation, inflammation, and muscle cross-sectional area (CSA) in spinal nerve ligated rats. Sixteen female rats were assigned to sham (CON), spinal nerve ligation (SNL), SNL+ curcumin 100 mg/kg BW (100CUR), and SNL+ bisdemethoxycurcumin 50 mg/kg BW (50CMO) for 4 weeks. Ipsilateral (surgical) soleus and tibialis anterior (TA) muscles was stained for dystrophin to measure CSA. Ipsilateral and contralateral (non-surgical) plantaris muscles were analyzed for protein content for acetylcholine receptor (AChR), CaMKII, CaMKIIThr286, nuclear factor-κB (NF-κB), NF-κBSer536, and interleukin-1β (IL-1β) and normalized to α-tubulin and then CON. A significant (p < 0.050) group effect was observed for TA CSA where CON (11,082.25 ± 1617.68 μm2; p < 0.001) and 100CUR (9931.04 ± 2060.87 μm2; p = 0.018) were larger than SNL (4062.25 ± 151.86 μm2). In the ipsilateral plantaris, the SNL (4.49 ± 0.69) group had greater CaMKII activation compared to CON (1.00 ± 0.25; p = 0.010), 100CUR (1.12 ± 0.45; p = 0.017), and 50CMO (0.78 ± 0.19; p = 0.009). The ipsilateral plantaris (2.11 ± 0.66) had greater IL-1β protein content than the contralateral leg (0.65 ± 0.14; p = 0.041) in the SNL group. In plantaris, the SNL (1.65 ± 0.51) group had greater NF-κB activation compared to CON (1.00 ± 0.29; p = 0.021), 100CUR (0.61 ± 0.10; p = 0.003), 50CMO (0.77 ± 0.25; p = 0.009) groups. The observed reduction in Ca2+ signaling and inflammation in type II plantaris muscle fibers might reflect the changes within the type II TA muscle fibers which may contribute to the mitigation of TA mass loss with curcumin supplementation.
Collapse
Affiliation(s)
- Casey Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| | - Nigel C. Jiwan
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
- Department of Kinesiology, Hope College, Holland, MI 49423, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| |
Collapse
|
3
|
Farag MA, Ragab NA, Maamoun MAI. Metabolites profiling of Sapota fruit pulp via a multiplex approach of gas and ultra performance liquid chromatography/mass spectroscopy in relation to its lipase inhibition effect. PeerJ 2024; 12:e17914. [PMID: 39221269 PMCID: PMC11366232 DOI: 10.7717/peerj.17914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background Sapota, Manilkara zapota L., are tasty, juicy, and nutrient-rich fruits, and likewise used for several medicinal uses. Methods The current study represents an integrated metabolites profiling of sapota fruits pulp via GC/MS and UPLC/MS, alongside assessment of antioxidant capacity, pancreatic lipase (PL), and α-glucosidase enzymes inhibitory effects. Results GC/MS analysis of silylated primary polar metabolites led to the identification of 68 compounds belonging to sugars (74%), sugar acids (18.27%), and sugar alcohols (7%) mediating the fruit sweetness. Headspace SPME-GC/MS analysis led to the detection of 17 volatile compounds belonging to nitrogenous compounds (72%), ethers (7.8%), terpenes (7.6%), and aldehydes (5.8%). Non-polar metabolites profiling by HR-UPLC/MS/MS-based Global Natural Products Social (GNPS) molecular networking led to the assignment of 31 peaks, with several novel sphingolipids and fatty acyl amides reported for the first time. Total phenolic content was estimated at 6.79 ± 0.12 mg gallic acid equivalent/gram extract (GAE/g extract), but no flavonoids were detected. The antioxidant capacities of fruit were at 1.62 ± 0.2, 1.49 ± 0.11, and 3.58 ± 0.14 mg Trolox equivalent/gram extract (TE/g extract) via DPPH, ABTS, and FRAP assays, respectively. In vitro enzyme inhibition assays revealed a considerable pancreatic lipase inhibition effect (IC50 = 2.2 ± 0.25 mg/mL), whereas no inhibitory effect towards α-glucosidase enzyme was detected. This study provides better insight into sapota fruit's flavor, nutritional, and secondary metabolites composition mediating for its sensory and health attributes.
Collapse
|
4
|
Shi L, Zhao W, Yang Z, Subbiah V, Suleria HAR. Extraction and characterization of phenolic compounds and their potential antioxidant activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81112-81129. [PMID: 36201076 PMCID: PMC9606084 DOI: 10.1007/s11356-022-23337-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/25/2022] [Indexed: 05/12/2023]
Abstract
For thousands of years, plant has been widely applied in the medical area and is an important part of human diet. A high content of nutrients could be found in all kinds of plants, and the most outstanding group of nutrients that attracts scientists' attention is the high level of phenolic compounds. Due to the relationship between high phenolic compound content and high antioxidant capacity, plant extracts are expected to become a potential treatment for oxidation stress diseases including diabetes and cancer. However, according to the instability of phenolic compounds to light and oxygen, there are certain difficulties in the extraction of such compounds. But after many years of development, the extraction technology of phenolic compounds has been quite stable, and the only problem is how to obtain high-quality extracts with high efficiency. To further enhance the value of plant extracts, concentration and separation methods are often applied, and when detailed analysis is required, characterization methods including HPLC and LC/GC-MS will be applied to evaluate the number and type of phenolic compounds. A series of antioxidant assays are widely performed in numerous studies to test the antioxidant capacity of the plant extracts, which is also an important basis for evaluating value of extracts. This paper intends to provide a view of a variety of methods used in plants' phenolic compound extraction, separation, and characterization. Furthermore, this review presents the advantages and disadvantages of techniques involved in phenolic compound research and provides selected representative bibliographic examples.
Collapse
Affiliation(s)
- Linghong Shi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wanrong Zhao
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zihong Yang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Vigasini Subbiah
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Malik S, Kaur K, Prasad S, Jha NK, Kumar V. A perspective review on medicinal plant resources for their antimutagenic potentials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62014-62029. [PMID: 34431051 DOI: 10.1007/s11356-021-16057-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal that medicinal plant resources are being explored for identifying potent antimutagenic as well as cancer preventing agents. There is mounting evidence that cancer and other mutation-related diseases can be prevented with the use of medicinal pant resources including crude extracts, active fractions, phytochemicals, and pure phytomolecules. These medicinal plant resources possessing antimutagenic potentials have been shown to target molecular mechanisms underlying the mutagenic impacts. Technological advents and high-throughput screening/activity methods have revolutionized this field, though several potent plants and their active principles have been reported as effective antimutagens. The translational success rate needs to be improved, but the trends are encouraging. In this review, we present the current understandings and updates on various mutagens in the environment, toxicities related/attributed to them, the resultant mutations (and cancer), and how medicinal plants come to the rescue. A perspective review has been presented on whether and how medicinal plant resources can be an effective approach for addressing mutagens in the environment. An account of medicinal plant resources used as antimutagenic agents has been given along with the underlying mechanism of action and their therapeutic potential in various models of cancer. Recent success stories, current challenges, and future prospects are discussed.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
6
|
Pharmacological Profile, Bioactivities, and Safety of Turmeric Oil. Molecules 2022; 27:molecules27165055. [PMID: 36014301 PMCID: PMC9414992 DOI: 10.3390/molecules27165055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The pharmacological attributes of turmeric have been extensively described and frequently related to the action of curcuminoids. However, there is also scientific evidence of the contribution of turmeric oil. Since the oil does not contain curcuminoids in its composition, it is crucial to better understand the therapeutic role of other constituents in turmeric. The present review discusses the pharmacokinetics of turmeric oil, pointing to the potential application of its active molecules as therapeutic compounds. In addition, the bioactivities of turmeric oil and its safety in preclinical and clinical studies were revised. This literature-based research intends to provide an updated overview to promote further research on turmeric oil and its constituents.
Collapse
|
7
|
Anti oxidative potentials and storage stability of pasteurised mixed fruits juices from pineapple and bitter orange. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Sravani AB, Mathew EM, Ghate V, Lewis SA. A Sensitive Spectrofluorimetric Method for Curcumin Analysis. J Fluoresc 2022; 32:1517-1527. [PMID: 35526207 PMCID: PMC9080346 DOI: 10.1007/s10895-022-02947-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Curcumin (CUR), a natural polyphenolic compound extracted from the rhizomes of Curcuma longa, is used as a pharmaceutical agent, spice in food, and as a dye. Currently, CUR is being investigated for cancer treatment in Phase-II clinical trials. CUR also possesses excellent activities like anti-inflammatory, anti-microbial, and anti-oxidant, therefore quality control is crucial. The present research work was to develop a new, simple, validated and time-saving rapid 96-well plate spectrofluorimetric method for the determination of CUR. The developed method was compared with routinely used high performance liquid chromatography (HPLC) technique. The developed method were found to be linear in the concentration range of 15 to 3900 ng/mL with R2 ≥ 0.9983 for spectrofluorimetric and 50-7500 ng/mL with R2 ≥ 0.9999 for HPLC method. Accuracy, intraday and interday precision was adequate, with RSD lower than the suggested limits. The limits for the detection and the quantification of CUR were 7 and 15 ng/mL for spectrofluorimetric, and 25 and 50 ng/mL for HPLC respectively. The Bland-Altman analysis demonstrated the similarities between the two methods. The 96-well plate method was successfully applied to determine CUR in solid lipid nanoparticles (SLNs) and chitosan nanoparticles (Chi-NPs). The developed spectrofluorimetric method can hence serve as a possible replacement for the HPLC method for the quantification of CUR in healthcare and food products.
Collapse
Affiliation(s)
- Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), 576104, Manipal, Karnataka, India
| | - Elizabeth Mary Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), 576104, Manipal, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), 576104, Manipal, Karnataka, India.
| |
Collapse
|
9
|
Development of Turmeric Oil—Loaded Chitosan/Alginate Nanocapsules for Cytotoxicity Enhancement against Breast Cancer. Polymers (Basel) 2022; 14:polym14091835. [PMID: 35567007 PMCID: PMC9101660 DOI: 10.3390/polym14091835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Turmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical, with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, compared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and can serve as prospective candidates for in vivo anticancer activity evaluation.
Collapse
|
10
|
The Effect of the Addition Turmeric on Selected Quality Characteristics of Duck Burgers Stored under Refrigeration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to evaluate the effects of turmeric supplementation on selected quality features, oxidative stability, and the safety of duck meat burgers. Four burger variants, namely I–control, no additive, II–with turmeric powder, III–with turmeric extract, and IV–with turmeric paste, were tested. The pH, WHC, colour parameters on the CIE L*a*b* scale, finished products’ shear force, TBARS index, and the total number of microorganisms were determined while performing sensory evaluations. Tests were carried out after 24 h, 6, 12, and 18 days of refrigerated storage (4 ± 2 °C). The addition of turmeric powder and paste significantly limited lipid oxidation processes in vacuum-packed duck meat burgers over an 18-day period. Although lipid oxidation processes accelerated after 6 days in all burger variants, burgers with powdered turmeric powder showed the lowest TBARS index values and limited total microorganism increases. Turmeric paste and powder additions resulted in decreased pH, increased water retention, and lighter colouration in refrigerated products. These additives were deemed acceptable during sensory evaluation. The most desirable aroma and taste, including juiciness, were in burgers with turmeric paste addition, while burgers with powdered additions were rated higher for their desired aroma and intensity of taste.
Collapse
|
11
|
Jaiswal SG, Naik SN. Turmeric Oil: Composition, Extraction, Potential Health Benefits and Other Useful Applications. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The turmeric essential oil of Curcuma species has extensively more useful properties due to its rich phytochemical profile. The concentration of volatile chemical constituents varies according to their type of applied plant part (i.e., root, rhizome, leaves, and flower) for extraction and type of the adopted extraction method. Novel extraction and purification methods, subcritical CO2 , supercritical CO2 , pressurized liquid extraction, and molecular distillation are found to be more efficient for good recovery of this volatile oil, along with increased concentrations of specified compounds. Not only have the curcuminoid compounds had a broad potential in the field of pharmacology but also the turmeric oil is found to have great applicability in treating several diseases and disorders. Turmeric oil possesses good antioxidant, antimicrobial, anticancer, anti-hyperlipidemic anti-inflammatory, anti-diabetic, and hepato-protective properties. Apart from medicinal fields, this oil has also a great future in the cosmetics, pesticide, and food industries due to its rich chemical profile. The present review focuses on providing information about turmeric oil in terms of its physicochemical properties, chemical composition, and available traditional extraction techniques, as well as available novel extraction options, actual health benefits, and other useful applications. It is hoped that the reported information is helpful for further discovery in the area of food, pharmaceutical, and cosmeceutical applications.
Collapse
Affiliation(s)
- Swapnil Ganesh Jaiswal
- Department of Agricultural Engineering, Maharashtra Institute of Technology Aurangabad, Maharashtra, India-431010
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Satya Narayan Naik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| |
Collapse
|
12
|
Gupta AK, Dhua S, Sahu PP, Abate G, Mishra P, Mastinu A. Variation in Phytochemical, Antioxidant and Volatile Composition of Pomelo Fruit ( Citrus grandis (L.) Osbeck) during Seasonal Growth and Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091941. [PMID: 34579472 PMCID: PMC8467822 DOI: 10.3390/plants10091941] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 05/07/2023]
Abstract
Citrus fruits exhibit a high level of different phytoconstituents, of which the changes in the different parts of the fruit during ripening have not been thoroughly studied yet. Thus, in this study, we have investigated how different parts of pomelo fruit (Citrus grandis L.) are modified throughout the development of two consecutive growing seasons. In detail, the main phytochemical compounds, such as total phenolic content, total flavonoid content, antioxidant capacity, DPPH free radical scavenging activity, Ferric reducing antioxidant power (FRAP), and naringin and tannin content, were analyzed. A systematic metabolism of these compounds was found during the development of the fruit, but some pomelo tissues showed a fluctuating trend, suggesting a dependence on the different growing season. Focusing on the tissue distribution of these compounds, the fruit membrane contained the highest level of total phenolic and flavonoid content; fruit flavedo displayed the highest antioxidant capacities and FRAP activities, whereas maximum accumulation of naringin was noticed in fruit albedo. Instead, the highest DPPH free radical scavenging activity and tannin contents were found in the pomelo juice. Regarding the distribution of compounds, a possible bias pattern for the accumulation of those compounds has been noticed throughout the fruit development. From the GC-MS analysis, a total of 111 compounds were identified, where 91 compounds were common in both seasons. Overall, these results could be useful for the food processing industry as guidelines for excellent quality foods and for introducing health-beneficial products and components into our daily diets.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Subhamoy Dhua
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Partha Pratim Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur 784028, Assam, India;
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|
13
|
Paradkar PH, Juvekar AS, Barkume MS, Amonkar AJ, Joshi JV, Soman G, Vaidya ADB. In vitro and in vivo evaluation of a standardized haridra (Curcuma longa Linn) formulation in cervical cancer. J Ayurveda Integr Med 2021; 12:616-622. [PMID: 34531090 PMCID: PMC8642669 DOI: 10.1016/j.jaim.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background The anti-cancer activity of phytomolecules present in turmeric or haridra (Curcuma longa Linn) extracts against cancer has been described in various ‘in vitro and in vivo’ studies. Objective In the present study, in vitro and in vivo anti-cancer and chemo-preventive activity of a new standardized Supercritical Turmeric Oil Extract (SCTOE) NBFR-03 was evaluated in cervical cancer models. Methods and materials In vitro cytotoxicity of this formulation was assessed at 10, 20, 40, and 80 μg/ml concentrations, in three cervical cancer cell lines (HeLa, SiHa, ME180) using Sulforhodamine B assay. The in vivo anti-cancer activity was evaluated in two groups of female nude mice; the first one was with tumor xenograft implants and at the same time treatment was started with 96 μl/kg/day p.o. and 192 μl/kg/day p.o. NBFR-03 for three months. The second group was kept as chemoprevention group where mice were pre-treated with the formulation (96 μl/kg/day p.o.) for two weeks and injected with cancer cell suspension with continued treatment for three months. Results No cytotoxicity was seen in any cell line with the extract when compared to positive control (Adriamycin 10 μg/ml). In mice the first treatment group with tumor xenograft implants did not show any significant anti-tumor activity but showed a trend where higher dose group had smaller tumor volumes as compared to lower dose group and controls (p = 0.37 and p = 0.34 respectively). The chemopreventive group with pre-treated mice also showed smaller tumor size as compared to controls (p = 0.163). Conclusion NBFR-03 turmeric oil extract showed a promising trend in mice pre-treated with NBFR-03. There is a scope for further studying the potential of this extract as complementary therapy and as a chemopreventive.
Collapse
Affiliation(s)
- P H Paradkar
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India.
| | - A S Juvekar
- Anticancer Drug Screening Facility, ACTREC, Kharghar, Navi Mumbai, India
| | - M S Barkume
- Anticancer Drug Screening Facility, ACTREC, Kharghar, Navi Mumbai, India
| | - A J Amonkar
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| | - J V Joshi
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| | - G Soman
- Nisarga Biotech Pvt Ltd., Satara, India
| | - A D B Vaidya
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| |
Collapse
|
14
|
Ti H, Mai Z, Wang Z, Zhang W, Xiao M, Yang Z, Shaw P. Bisabolane-type sesquiterpenoids from Curcuma longa L. exert anti-influenza and anti-inflammatory activities through NF-κB/MAPK and RIG-1/STAT1/2 signaling pathways. Food Funct 2021; 12:6697-6711. [PMID: 34179914 DOI: 10.1039/d1fo01212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Influenza is a viral respiratory illness that causes seasonal epidemics and occasional pandemics. Disease severity may be contributed by influenza virus-induced cytokine dysregulation. The study was designed to investigate the isolation and identification of bisabolane-type sesquiterpenoids from Curcuma longa L., their antiviral and anti-inflammatory activities against H1N1 and their potential role in regulating host immune response in vitro. A pair of new bisabolane-type sesquiterpenoids, (6S,7S)-3-hydroxy-3-hydroxymethylbisabola-1,10-diene-9-one (18) together with seventeen known analogs (1-17), was isolated and elucidated from Curcuma longa L. Compounds 2, 11 and 14 could significantly inhibit A/PR/8/34 (H1N1) replication in MDCK cells, and compound 2 could significantly inhibit A/PR/8/34 (H1N1) replication in A549 cells. Compounds 4, 8, 9, 13 and 17 could markedly reduce pro-inflammatory cytokine (TNF-α, IL-6, IL-8 and IP-10) production at the mRNA and protein levels in A549 cells. Compound 4 regulated the levels of steroid biosynthesis, oxidative phosphorylation and protein processing in the endoplasmic reticulum, thereby inhibiting immune responses by proteomics analysis. Furthermore, compound 4 could inhibit the expression of p-NF-κB p65, NF-κB p65, IκBα, p-p38 MAPK, p-IκBα, RIG-1, STAT-1/2 and p-STAT-1/2 in the signaling pathways. These findings indicate that bisabolane-type sesquiterpenoids of C. longa could inhibit the expression of inflammatory cytokines induced by the virus and regulate the activity of NF-κB/MAPK and RIG-1/STAT-1/2 signaling pathways in vitro.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Degot P, Huber V, Touraud D, Kunz W. Curcumin extracts from Curcuma Longa - Improvement of concentration, purity, and stability in food-approved and water-soluble surfactant-free microemulsions. Food Chem 2020; 339:128140. [PMID: 33152894 DOI: 10.1016/j.foodchem.2020.128140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Curcumin was extracted from Curcuma Longa employing a green, bio-based, and food-agreed surfactant-free microemulsion (SFME) consisting of water, ethanol, and triacetin. Concerning the high solubility of curcumin in the examined ternary mixtures, it was attempted to produce highly concentrated tinctures of up to a total of ~130 mg/mL curcuminoids in the solvent by repeatedly extracting fresh rhizomes in the same extraction mixture. The amount of water had a significant influence on the number of cycles that could be performed as well as on the extraction of the different curcuminoids. In addition, the purity of single extracts was enhanced to 94% by investigating several purification steps, e.g. vacuum distillation and lyophilization. Through purification before extraction, the water insoluble curcumin extract could be solubilized indefinitely in an aqueous environment. Additional stability tests showed that solutions of curcumin can be stable up to five months when concealed from natural light.
Collapse
Affiliation(s)
- Pierre Degot
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Verena Huber
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
16
|
Akhtar MF, Saleem A, Alamgeer, Saleem M. A Comprehensive Review on Ethnomedicinal, Pharmacological and Phytochemical Basis of Anticancer Medicinal Plants of Pakistan. Curr Cancer Drug Targets 2020; 19:120-151. [PMID: 29984657 DOI: 10.2174/1568009618666180706164536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
The widespread emergence of cancer and development of resistance to chemotherapeutic agents is increasing the interest of scientists in the use of ethnomedicinal preparations and isolated phytochemicals in the treatment and prevention of disease. Medicinal plants have been used in Pakistan since prehistoric times. The present review was designed to identify anticancer plants of ethnomedicinal significance and to summarize the anticancer activities carried out on these medicinal plants to establish the pharmacological and phytochemical basis of their use. Pakistani anticancer medicinal plants of ethnopharmacological significance were reviewed. Conservation status, worldwide distribution and ethno-botanical preparations of these medicinal plants were also tabulated. These medicinal plants and their isolated phytochemicals were also explored for their anticancer activities. It was revealed that there were 108 anticancer medicinal plants used to treat different neoplastic conditions on the folklore basis throughout Pakistan. Among these anticancer plants, 64 plants were found to be investigated previously for anticancer activity through in vivo and in vitro methods. Several ethnomedicinal plants have been validated for their anticancer activities through in vitro and animal models. These medicinal plants and phytochemicals resulted in the inhibition of initiation, progression or metastasis of neoplasm. Some medicinal plants (10) are endangered species. Half of folkloric Pakistani plants have been validated for use against various cancers through in vitro or in vivo methods. It is necessary to carry out further pharmacological and toxicological evaluation of these folkloric anticancer plants of Pakistan. It is also necessary to identify and isolate further potential phytochemicals so as to be evaluated in cancer patients.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Alamgeer
- Department of Pharmacology, Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Mohammad Saleem
- Department of Pharmacology, College of Pharmacy, The University of Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Biochemistry, Safety, Pharmacological Activities, and Clinical Applications of Turmeric: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7656919. [PMID: 32454872 PMCID: PMC7238329 DOI: 10.1155/2020/7656919] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Turmeric (Curcuma longa L.) is a popular natural drug, traditionally used for the treatment of a wide range of diseases. Its root, as its most popular part used for medicinal purposes, contains different types of phytochemicals and minerals. This review summarizes what is currently known on biochemistry, safety, pharmacological activities (mechanistically), and clinical applications of turmeric. In short, curcumin is considered as the fundamental constituent in ground turmeric rhizome. Turmeric possesses several biological activities including anti-inflammatory, antioxidant, anticancer, antimutagenic, antimicrobial, antiobesity, hypolipidemic, cardioprotective, and neuroprotective effects. These reported pharmacologic activities make turmeric an important option for further clinical research. Also, there is a discussion on its safety and toxicity.
Collapse
|
18
|
Akram M, Riaz M, Wadood AWC, Hazrat A, Mukhtiar M, Ahmad Zakki S, Daniyal M, Shariati MA, Said Khan F, Zainab R. Medicinal plants with anti-mutagenic potential. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1749527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Abdul Wadood Chishti Wadood
- University College of Conventional Medicine, Department of Eastern Medicine, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Muhammad Mukhtiar
- Department of Pharmacy, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | | | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
- Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey, Kazakhstan
| | - Fahad Said Khan
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Rida Zainab
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| |
Collapse
|
19
|
Khalil I, Ghani M, Khan MR, Akbar F. Evaluation of biological activities and in vivo amelioration of CCl 4 induced toxicity in lung and kidney with Abutilon pannosum (G.Forst.) Schltdl. in rat. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112395. [PMID: 31739104 DOI: 10.1016/j.jep.2019.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abutilon pannosum is used in Pakistan for bladder inflammation, diuretic, lung disorders, diabetes and in lowering pyrexia. METHODS Amount of total phenolic content, total flavonoid content and HPLC analysis of APM for the presence of polyphenolics were carried out. Antioxidant activity was determined by using different in vitro antioxidant assays. Amelioration effects of APM (200 mg/kg body weight and 400 mg/kg body weight) against CCl4 induced kidney and lung toxicity in rat was assessed by determining level of antioxidant enzymes, lipid peroxidation products, cytokines (TNF-α, IL-1β and IL-2), comet assay and histological analysis. RESULTS HPLC-DAD studies of APM indicated the presence of rutin (0.635 ± 0.011 μg/mg dry extract), gallic acid (1.07 ± 0.043 μg/mg dry extract) and catechin (0.246 ± 0.08 μg/mg dry extract) and considerable quantity of total phenolic (55.485 ± 0.85 mg GAE/g dry extract) and total flavonoid content (19.90 ± 0.58 mg Rutin/g dry extract). During in vitro antioxidant assays APM showed significant (p < 0.05) activity for iron chelation, reducing potential, inhibition of β-carotene oxidation while moderate potential for scavenging of DPPH, hydroxyl, nitrite and phosphomolybdenum radical. Administration of CCl4 to rat severely depleted the activity level of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), and reduced glutathione (GSH) concentration while appreciably increased the concentration of thiobarbituric acid reactive substances (TBARS), H2O2, nitrite, TNF-α, IL-1β and IL-2 in lung and kidney tissues of rat. Comet length, % DNA in tail and tail moment significantly (p < 0.01) increased in lung and kidney cells of CCl4 intoxicated rat. Further, injuries in lung and kidney tissues were recorded with CCl4 induced toxicity in rat. The rats treated with APM along with CCl4 exhibited an appreciable level of restoration of the altered parameters towards the control animals. CONCLUSION The results of this study suggested the protective potential of APM in CCl4 intoxicated rats for kidney and lung injuries.
Collapse
Affiliation(s)
- Iza Khalil
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Marvi Ghani
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Fakhrah Akbar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
20
|
Emerging Sustainable Nanostructured Materials Facilitated by Herbal Bioactive Agents for Edible Food Packaging. FOOD ENGINEERING SERIES 2020. [DOI: 10.1007/978-3-030-44552-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Ileri Ercan N. Understanding Interactions of Curcumin with Lipid Bilayers: A Coarse-Grained Molecular Dynamics Study. J Chem Inf Model 2019; 59:4413-4426. [PMID: 31545601 DOI: 10.1021/acs.jcim.9b00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interactions of curcumin with various lipid bilayers (POPC, DOPC, oxidized POPC, and oxidized DOPC) and model biomembranes (symmetric bacteria and yeast plasma membranes, as well as asymmetric mammalian plasma membrane) are investigated. A nonlinear thinning effect of curcumin with respect to its concentration is demonstrated in PC membranes and in the yeast. Curcumin induces asymmetry to the symmetric yeast membranes but reduces the degree of asymmetry of the mammalian plasma membranes when the molecule is placed facing the outer leaflets. The molecule is found to diffuse through oxidized PC bilayers, POPC bilayers at a curcumin to lipid ratio C/L = 1/5, yeast membranes at C/L = 1/100, and the mammalian plasma membranes at C/L = 1/5 and when the molecule placed facing the outer leaflets. The results of this work demonstrate that the lipid type, the lipid distribution, and curcumin amount play a critical role in defining the interactions of curcumin with the lipids and their transport behavior through the bilayers.
Collapse
Affiliation(s)
- Nazar Ileri Ercan
- Chemical Engineering Department , Bogazici University , Bebek 34342 , Istanbul , Turkey
| |
Collapse
|
22
|
Kazeem MI, Bankole HA, Fatai AA, Adenowo AF, Davies TC. Antidiabetic Functional Foods with Antiglycation Properties. REFERENCE SERIES IN PHYTOCHEMISTRY 2019:1283-1310. [DOI: 10.1007/978-3-319-78030-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Sureshkumar D, Begum S, Johannah NM, Maliakel B, Krishnakumar IM. Toxicological evaluation of a saponin-rich standardized extract of fenugreek seeds (FenuSMART ®): Acute, sub-chronic and genotoxicity studies. Toxicol Rep 2018; 5:1060-1068. [PMID: 30416976 PMCID: PMC6218839 DOI: 10.1016/j.toxrep.2018.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
Safety evaluation of a standardized extract of fenugreek seeds (FenuSMART). Acute and subchronic oral toxicity studies of FenuSMART on Wistar rats. Mutagenicity study of FenuSMART. The present study investigated the safety of a saponin-rich standardized extract of fenugreek seeds (FenuSMART®; FHE), that has been clinically shown to be effective in ameliorating the postmenopausal discomforts and establishing hormonal balance. The safety was assessed by oral acute (2500 mg/kg b. wt. for 14 days) and subchronic (250, 500 and 1000 mg/kg b. wt. for 90 days) toxicity studies on Wistar rats and mutagenicity studies employing Salmonella typhimurium strains. Administration of FHE did not produce any toxicologically significant changes in clinical/behavioral observations, ophthalmic examinations, body weight, organ weight, feed consumption, urinalysis, hematology and clinical biochemistry parameters when compared to the untreated control group of animals. Highest dose recovery group (1000 mg/kg b. wt.) of animals also showed no mortality or adverse events; with hematological and biochemical parameters at par with those of controls. Terminal autopsy revealed no alterations in relative organ weight or any treatment-related histopathology changes. FHE also showed no mutagenicity upon Ames test employing TA-98, TA-100 and TA-102 Salmonella typhimurium strains with or without metabolic activation. Based on the results of the study, the no observed-adverse-effect level (NOAEL) of FHE was determined as 1000 mg/kg b. wt./day, the highest dose tested.
Collapse
Affiliation(s)
- D Sureshkumar
- CARe-KERALAM Ltd., Kinfra Small Industries Park, Thrissur, 680309, Kerala, India
| | - Shamshad Begum
- University of Agricultural Sciences, Bangalore, 560024, Karnataka, India
| | - N M Johannah
- R&D Centre, Akay Flavours & Aromatics Ltd., Cochin, 683561, Kerala, India
| | - Balu Maliakel
- R&D Centre, Akay Flavours & Aromatics Ltd., Cochin, 683561, Kerala, India
| | - I M Krishnakumar
- R&D Centre, Akay Flavours & Aromatics Ltd., Cochin, 683561, Kerala, India
| |
Collapse
|
24
|
Sharma S, Saxena DC, Riar CS. Characteristics of β-glucan extracted from raw and germinated foxtail (Setaria italica) and kodo (Paspalum scrobiculatum) millets. Int J Biol Macromol 2018; 118:141-148. [DOI: 10.1016/j.ijbiomac.2018.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 04/01/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
|
25
|
Dosoky NS, Setzer WN. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018; 10:E1196. [PMID: 30200410 PMCID: PMC6164907 DOI: 10.3390/nu10091196] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the genus Curcuma L. have been used in traditional medicine for centuries for treating gastrointestinal disorders, pain, inflammatory conditions, wounds, and for cancer prevention and antiaging, among others. Many of the biological activities of Curcuma species can be attributed to nonvolatile curcuminoids, but these plants also produce volatile chemicals. Essential oils, in general, have shown numerous beneficial effects for health maintenance and treatment of diseases. Essential oils from Curcuma spp., particularly C. longa, have demonstrated various health-related biological activities and several essential oil companies have recently marketed Curcuma oils. This review summarizes the volatile components of various Curcuma species, the biological activities of Curcuma essential oils, and potential safety concerns of Curcuma essential oils and their components.
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
26
|
Antiulcer Effect of Honey in Nonsteroidal Anti-Inflammatory Drugs Induced Gastric Ulcer Model in Rats: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7515692. [PMID: 30105063 PMCID: PMC6076929 DOI: 10.1155/2018/7515692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Background Peptic ulcer is a basic term for ulcers on the lower oesophagus, stomach, or jejunum. The specific term for ulcer in the stomach is gastric ulcer. The extensive use of honey around the globe helps researchers to study the usefulness of honey. Many studies had already been conducted and proved the effectiveness of honey in treating gastric ulcer. Methods A systematic review of the literature was conducted to identify relevant studies on honey used as an alternative treatment of gastric ulcer cause by NSAIDs. A comprehensive search was conducted in Medline, SCOPUS, and Ebscohost. The main criteria used were articles published in English and using NSAIDs-induced gastric ulcer in rat's model and those reporting the effectiveness of honey. Results Articles published between 2001 and 2014 were identified to be relevant in studies related to the inclusion criteria. The literature search found 30 potential and closely related articles in this review, but only 5 articles were taken which meet the criteria needed to be fulfilled. Conclusions All studies in this review reported the efficacy of honey for gastric ulcer based on its antioxidant and cytoprotective activities. Most of the studies conducted used different types of honey at various doses on rats. Future studies should be conducted to identify the appropriate dose for humans to achieve similar gastroprotective effects.
Collapse
|
27
|
Kazeem MI, Bankole HA, Fatai AA, Adenowo AF, Davies TC. Antidiabetic Functional Foods with Antiglycation Properties. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54528-8_16-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Naqvi A, Malasoni R, Gupta S, Srivastava A, Pandey RR, Dwivedi AK. In Silico and In Vitro Anticancer Activity of Isolated Novel Marker Compound from Chemically Modified Bioactive Fraction from Curcuma longa (NCCL). Pharmacogn Mag 2017; 13:S640-S644. [PMID: 29142426 PMCID: PMC5669109 DOI: 10.4103/pm.pm_23_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/22/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Turmeric (Curcuma longa) is reported to possess wide array of biological activities. Herbal Medicament (HM) is a standardized hexane-soluble fraction of C. longa and is well known for its neuroprotective effect. OBJECTIVE In this study, we attempted to synthesize a novel chemically modified bioactive fraction from HM (NCCL) along with isolation and characterization of a novel marker compound (I). MATERIALS AND METHODS NCCL was prepared from HM. The chemical structure of the marker compound isolated from NCCL was determined from 1D/2D nuclear magnetic resonance, mass spectroscopy, and Fourier transform infrared. The compound so isolated was subjected to in silico and in vitro screenings to test its inhibitory effect on estrogen receptors. RESULTS Molecular docking studies revealed that the binding poses of the compound I was energetically favorable. Among NCCL and compound I taken for in vitro studies, NCCL had exhibited good anti-cancer activity over compound I against MCF-7, MDA-MB-231, DU-145, and PC-3 cells. CONCLUSION This is the first study about the synthesis of a chemically modified bioactive fraction which used a standardized extract since the preparation of the HM. It may be concluded that NCCL fraction having residual components induce more cell death than compound I alone. Thus, NCCL may be used as a potent therapeutic drug. SUMMARY In the present paper, a standardized hexane soluble fraction of Curcuma longa (HM) was chemically modified to give a novel bioactive fraction (NCCL). A novel marker compound was isolated from NCCL and was characerized using various spectral techniques. The compound so isolated was investigated for in-silico screenings. NCCL and isolated compound was subjected to in-vitro anti-cancer screenings against MCF 7, MDA MB 231 (breast adenocarcinoma) and DU 145 and PC 3 cell lines (androgen independent human prostate cancer cells). The virtual screenings reveals that isolated compound has shown favourable drug like properties. NCCL fraction having residual components induces more cell death in these four cancer cell lines than isolated compound alone. Abbreviations used: HM: Herbal Medicament; NCCL: Chemically modified HM; FT-IR: Fourier transform-infrared spectroscopy; NMR: Nuclear magnetic resonance spectroscopy; MS: Mass spectroscopy; HPLC: High-performance liquid chromatography; ER: Estrogen receptor; MTT: 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; MIC: Minimum inhibitory concentration; TAM: Tamoxifen KBr: Potassium bromide; DMSO: Dimethyl sulfoxide; ACN: Acetonitrile; PDB: Protein Data Bank; PDA: Photodiode array detector.
Collapse
Affiliation(s)
- Arshi Naqvi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madina Al-Munawwara, Kingdom of Saudi Arabia
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Richa Malasoni
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Swati Gupta
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Akansha Srivastava
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rishi R. Pandey
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Dwivedi
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
29
|
Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, Tao H, Lu J, Wang Y, Chen X. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 2017; 57:1451-1523. [PMID: 27229295 DOI: 10.1080/10408398.2016.1176554] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.
Collapse
Affiliation(s)
- Wen Sun
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Sheng Wang
- b State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Wenwen Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Chuanhong Wu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongwei Gao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongxun Tao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Jinjian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
30
|
Nariya A, Pathan A, Shah N, Chettiar S, Patel A, Dattani J, Chandel D, Rao M, Jhala D. Ameliorative effects of curcumin against lead induced toxicity in human peripheral blood lymphocytes culture. Drug Chem Toxicol 2017; 41:1-8. [PMID: 28147706 DOI: 10.3109/01480545.2015.1133637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lead, a heavy metal and multifaceted toxicant, is well studied for its distribution and toxicity in ecosystem, yet there is no consensus on its amelioration by any synthetic or phytochemical compounds. Curcumin, a known antioxidant and dietary element, is a well-known herb, for its therapeutic uses and having a wide spectrum of its beneficial properties against several adverse effects. Hence, the current study was taken into consideration to evaluate the ameliorative effects of curcumin (3.87 μM, i.e. 1.43 μg/ml) against lead acetate (doses: 10-6 M, i.e. 0.379 μg/ml and 10-4 M, i.e. 37.9 μg/ml, durations: 24 h and 69 h) induced genotoxicity and oxidative stress in human peripheral blood lymphocyte cultures (PBLC). On one hand, antigenotoxic and antioxidative potentials of curcumin against lead were simultaneously evaluated by the array of genotoxicity and oxidative stress indices. The result postulated that lead acetate showed dose- and duration-dependent increase in both genotoxicity and oxidative stress whereas curcumin, when added along with lead acetate, showed the significant amelioration in all genotoxic and oxidative stress-related indices. The study indicated that, due to alteration in antioxidant defense system, there is an adverse genotoxic effect of lead. On the other hand, curcumin, a potent antidote, can protect chromatin material against lead -mediated genotoxicity by balancing the activity of antioxidant defense system.
Collapse
Affiliation(s)
- Ankit Nariya
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Ambar Pathan
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Naumita Shah
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Shiva Chettiar
- b GeneXplore Diagnostics and Research Centre Pvt. Ltd , Ahmedabad , Gujarat , India , and
| | - Alpesh Patel
- b GeneXplore Diagnostics and Research Centre Pvt. Ltd , Ahmedabad , Gujarat , India , and
| | - Jignasha Dattani
- c Regional Office for Health and Family Welfare , Ahmedabad , Gujarat , India
| | - Divya Chandel
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Mandava Rao
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Devendrasinh Jhala
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| |
Collapse
|
31
|
Deeb O, Goodarzi M. QSAR of Antioxidants. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antioxidants are substances that protect cells from the damaging effects of oxygen radicals, which are chemicals that play a part in some diseases such as cancer and others. Antioxidants are expected to be promising drugs in the management of these diseases by removing oxidative stress. Most of the modeling approaches involved in designing new antioxidants is based on Quantitative Structure-Activity Relationship (QSAR). A number of QSAR studies have been conducted to elucidate the structural requirements of antioxidants for their activities in order to predict the potency of these compounds with regard to the targeted activity and to direct the synthesis of more potent analogues. The main focus of this chapter is on the QSAR modeling of antioxidant compounds. The authors provide different QSAR studies of antioxidant compounds and try to compare between them in terms of the best models obtained and their use in designing potential new drugs.
Collapse
|
32
|
Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017; 22:molecules22010070. [PMID: 28045446 PMCID: PMC6155610 DOI: 10.3390/molecules22010070] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/25/2016] [Indexed: 02/06/2023] Open
Abstract
Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.
Collapse
|
33
|
E Lacerda RR, do Nascimento ES, de Lacerda JTJG, Pinto LDS, Rizzi C, Bezerra MM, Pinto IR, Filho SMP, Pinto VDPT, Filho GC, Gadelha CADA, Gadelha TS. Lectin from seeds of a Brazilian lima bean variety (Phaseolus lunatus L. var. cascavel) presents antioxidant, antitumour and gastroprotective activities. Int J Biol Macromol 2016; 95:1072-1081. [PMID: 27984144 DOI: 10.1016/j.ijbiomac.2016.10.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022]
Abstract
Lectins are proteins able to interact specifically and reversibly with carbohydrates. They are present in all living beings, particularly in legume seeds, which have many biological functions. The aim of this study was to isolate, characterize and verify antioxidant, anti-hemolytic, antitumor and gastroprotective activities in a lectin present in seeds of Phaseolus lunatus L. var. cascavel (PLUN). The isolation of lectin was performed by size exclusion chromatography on Sephadex G-100, which was isolated from a protein capable of agglutinating only human erythrocytes type A, being this the only inhibited haemagglutination n-acetyl-d-galactosamine. Its weight was estimated by PAGE is 128kDa. The lectin is thermostable up to 80°C and is active between pH 2-11. As 8M urea was able to denature the lectin. PLUN is a glycoprotein consisting of 2% carbohydrate and has antioxidant action with ascorbic acid equivalent antioxidant capacity (μMAA/g) of 418.20, 326 and 82.9 for total antioxidant activity, ABTS radical capture and capture of DPPH radical, respectively. The lectin has antitumor activity against melanoma derived cells at doses of 100 and 50mg/ml, reducing up to 83% tumor cells, and gastroprotective action, reducing up to 63% damaged area of the stomach induced by ethanol.
Collapse
Affiliation(s)
- Rodrigo Rodrigues E Lacerda
- Master by the Graduate Programme in Cellular and Molecular Biology at the Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil.
| | | | | | | | - Caroline Rizzi
- Federal University of Pelotas (Universidade Federal de Pelotas), Pelotas, Brazil.
| | | | | | | | | | | | | | - Tatiane Santi Gadelha
- Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil.
| |
Collapse
|
34
|
Sharma S, Saxena DC, Riar CS. Isolation of Functional Components β-Glucan and γ-Amino Butyric Acid from Raw and Germinated Barnyard Millet (Echinochloa frumentaceae) and their Characterization. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:231-8. [PMID: 27245684 DOI: 10.1007/s11130-016-0545-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The study was carried out to analyze the characteristics of two functional constituents' viz. γ-amino butyric acid (GABA) and β-glucan extracted from raw and germination barnyard millet (var. PRJ-1). A significant (P ≤ 0.05) effect of germination (sprouting) was observed in yield, chemical composition, functional, rheological and antioxidant properties of β-glucan and GABA. The yield of GABA extract was 12.34 % and the content increased from 6.37 mg/100 g in raw to 35.70 mg/100 g in germinated sample. The DPPH, total antioxidant and hydrogen peroxide scavenging activities of GABA extract increased after germination from 45.34 to 65.34 %, 15.3 to 33.3 millimole/g and 38.4 to 64.7 millimole/g, respectively. The yield of β-glucan extract of raw and germinated flour was 6.05 and 5.01 % whereas the β-glucan contents were 83.30 and 79.64 %, respectively. The functional properties of β-glucan i.e., swelling power, water binding capacity and DPPH scavenging activity increased from 1.45 to 1.76 g/g, 2.13 to 2.32 g/g and 44.39 to 57.42 %, respectively, after germination. Similarly there was an increase in the storage modulus after germination process which attributes a better viscoelastic capacity of β-glucan at low frequencies. The results exploit that the β-glucan and GABA might promise a polymeric incipient to be implemented as food additives with variable functional and structural characteristics.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| | - Dharmesh C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| | - Charanjit S Riar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India.
| |
Collapse
|
35
|
Premi M, Sharma HK. Effect of extraction conditions on the bioactive compounds from Moringa oleifera (PKM 1) seeds and their identification using LC–MS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9388-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Pitakpawasutthi Y, Thitikornpong W, Palanuvej C, Ruangrungsi N. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves. J Adv Pharm Technol Res 2016; 7:37-42. [PMID: 27144150 PMCID: PMC4850766 DOI: 10.4103/2231-4040.177200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chromolaena odorata (L.) R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC) - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2). Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E)-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential.
Collapse
Affiliation(s)
- Yamon Pitakpawasutthi
- Public Health Sciences Programme, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Worathat Thitikornpong
- Public Health Sciences Programme, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanida Palanuvej
- Public Health Sciences Programme, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nijsiri Ruangrungsi
- Public Health Sciences Programme, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Rangsit University, Pathumthani, Thailand
| |
Collapse
|
37
|
Vijayasteltar L, Nair GG, Maliakel B, Kuttan R, I.M. K. Safety assessment of a standardized polyphenolic extract of clove buds: Subchronic toxicity and mutagenicity studies. Toxicol Rep 2016; 3:439-449. [PMID: 28959566 PMCID: PMC5615916 DOI: 10.1016/j.toxrep.2016.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Despite the various reports on the toxicity of clove oil and its major component eugenol, systematic evaluations on the safety of polyphenolic extracts of clove buds have not been reported. Considering the health beneficial pharmacological effects and recent use of clove polyphenols as dietary supplements, the present study investigated the safety of a standardized polyphenolic extract of clove buds (Clovinol), as assessed by oral acute (5 g/kg b.wt. for 14 days) and subchronic (0.25, 0.5 and 1 g/kg b.wt. for 90 days) toxicity studies on Wistar rats and mutagenicity studies employing Salmonella typhimurium strains. Administration of Clovinol did not result in any toxicologically significant changes in clinical/behavioural observations, ophthalmic examinations, body weights, organ weights, feed consumption, urinalysis, hematology and clinical biochemistry parameters when compared to the untreated control group of animals, indicating the no observed-adverse-effect level (NOAEL) as 1000 mg/kg b.wt./day; the highest dose tested. Terminal necropsy did not reveal any treatment-related histopathology changes. Clovinol did not show genotoxicity when tested on TA-98, TA-100 and TA-102 with or without metabolic activation; rather exhibited significant antimutagenic potential against the known mutagens, sodium azide, NPD and tobacco as well as against 2-acetamidoflourene, which needed metabolic activation for mutagenicity.
Collapse
Affiliation(s)
| | | | - Balu Maliakel
- Akay Flavours & Aromatics Pvt. Ltd., Malayidamthuruthu PO, Cochin 683561, India
| | - Ramadasan Kuttan
- Amala Cancer Research Centre, Amala Nagar PO, Trichur 680555, India
| | - Krishnakumar I.M.
- Akay Flavours & Aromatics Pvt. Ltd., Malayidamthuruthu PO, Cochin 683561, India
- Corresponding author at: R & D Centre, Akay Flavours & Aromatics Pvt. Ltd., Ambunadu, Malaidamthuruth PO, Cochin 683561, India.Akay Flavours & Aromatics Pvt. Ltd.,Malayidamthuruthu POCochin683561India
| |
Collapse
|
38
|
Cervantes-Valencia ME, Alcala-Canto Y, Salem AZ, Kholif AE, Ducoing-Watty AM, Bernad-Bernad MJ, Gutiérrez-Olvera C. Influence of Curcumin (Curcuma Longa) as a Natural Anticoccidial Alternative in Adult Rabbits: First Results. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- María Eugenia Cervantes-Valencia
- Programa de Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yazmin Alcala-Canto
- Departamento de Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abdelfattah Z.M. Salem
- Facultad de Medicina Veterinariay Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Ahmed E. Kholif
- Dairy Science Department, National Research Centre, Giza, Egypt
| | | | | | - Carlos Gutiérrez-Olvera
- Departamento de Nutrición Animaly Bioquímica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
39
|
He YJ, Kuchta K, Lv X, Lin Y, Ye GR, Liu XY, Song HD, Wang LX, Kobayashi Y, Shu JC. Curcumin, the main active constituent of turmeric (Curcuma longa L.), induces apoptosis in hepatic stellate cells by modulating the abundance of apoptosis-related growth factors. ACTA ACUST UNITED AC 2015; 70:281-5. [PMID: 26609862 DOI: 10.1515/znc-2015-4143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/09/2015] [Indexed: 01/06/2023]
Abstract
Abstract
In order to elucidate the mechanism of action of curcumin against hepatic fibrosis, cultured rat hepatic stellate cells (HSC) (HSC-T6) were incubated with curcumin for 24 h, after which apoptosis was measured by flow-cytometry. The protein levels of the pro-apoptotic factors Fas and p53b as well as of the anti-apoptotic factor Bcl-2 were monitored by immunocytochemical ABC staining after incubation with curcumin for 24 h. In the case of 20 μM curcumin, not only was the respective apoptosis index increased, but also the abundance of the pro-apoptotic factors Fas and p53 were amplified, whereas that of the anti-apoptotic factor Bcl-2 decreased. All these effects were highly reproducible (P<0.05). Consequently, curcumin has an up-regulating effect on pro-apoptotic factors like Fas and p53 as well as a down-regulating effect of the anti-apoptotic factor Bcl-2, thus inducing apoptosis in HSC.
Collapse
Affiliation(s)
- Ya-Jun He
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Kenny Kuchta
- National Institute of Health Sciences, Division of Pharmacognosy, Phytochemistry and Narcotics, Setagaya-ku, Kamiyoga 1-18-1, 158-8501 Tokyo, Japan
| | - Xia Lv
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Yu Lin
- Medical Corporation Soujikai, 541-0046 Osaka, Chuo, Hirano 2-2-2, Japan
| | - Guo-Rong Ye
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Xu-You Liu
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Hui-Dong Song
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Yuta Kobayashi
- Faculty of Medicine, Shimane University, 693-8501 Izumo, Enya 89-1, Japan
| | | |
Collapse
|
40
|
Kurien BT, Harris VM, Quadri SMS, Coutinho-de Souza P, Cavett J, Moyer A, Ittiq B, Metcalf A, Ramji HF, Truong D, Kumar R, Koelsch KA, Centola M, Payne A, Danda D, Scofield RH. Significantly reduced lymphadenopathy, salivary gland infiltrates and proteinuria in MRL-lpr/lpr mice treated with ultrasoluble curcumin/turmeric: increased survival with curcumin treatment. Lupus Sci Med 2015; 2:e000114. [PMID: 26380101 PMCID: PMC4567741 DOI: 10.1136/lupus-2015-000114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 11/26/2022]
Abstract
Objectives Commercial curcumin (CU), derived from food spice turmeric (TU), has been widely studied as a potential therapeutic for a variety of oncological and inflammatory conditions. Lack of solubility/bioavailability has hindered curcumin's therapeutic efficacy in human diseases. We have solubilised curcumin in water applying heat/pressure, obtaining up to 35-fold increase in solubility (ultrasoluble curcumin (UsC)). We hypothesised that UsC or ultrasoluble turmeric (UsT) will ameliorate systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS)-like disease in MRL-lpr/lpr mice. Methods Eighteen female MRL-lpr/lpr (6 weeks old) and 18 female MRL-MpJ mice (6 weeks old) were used. Female MRL-lpr/lpr mice develop lupus-like disease at the 10th week and die at an average age of 17 weeks. MRL-MpJ mice develop lupus-like disease around 47 weeks and typically die at 73 weeks. Six mice of each strain received autoclaved water only (lpr-water or MpJ-water group), UsC (lpr-CU or MpJ-CU group) or UsT (lpr-TU or MpJ-TU group) in the water bottle. Results UsC or UsT ameliorates SLE in the MRL-lpr/lpr mice by significantly reducing lymphoproliferation, proteinuria, lesions (tail) and autoantibodies. lpr-CU group had a 20% survival advantage over lpr-water group. However, lpr-TU group lived an average of 16 days shorter than lpr-water group due to complications unrelated to lupus-like illness. CU/TU treatment inhibited lymphadenopathy significantly compared with lpr-water group (p=0.03 and p=0.02, respectively) by induction of apoptosis. Average lymph node weights were 2606±1147, 742±331 and 385±68 mg, respectively, for lpr-water, lpr-CU and lpr-TU mice. Transferase dUTP nick end labelling assay showed that lymphocytes in lymph nodes of lpr-CU and lpr-TU mice underwent apoptosis. Significantly reduced cellular infiltration of the salivary glands in the lpr-TU group compared with the lpr-water group, and a trend towards reduced kidney damage was observed in the lpr-CU and lpr-TU groups. Conclusions These studies show that UsC/UsT could prove useful as a therapeutic intervention in SLE/SS.
Collapse
Affiliation(s)
- Biji T Kurien
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA ; Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA ; Department Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Valerie M Harris
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA ; Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA
| | - Syed M S Quadri
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA ; Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA
| | - Patricia Coutinho-de Souza
- Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA
| | - Joshua Cavett
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA ; Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA
| | - Amanda Moyer
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA
| | - Bilal Ittiq
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA
| | - Angela Metcalf
- Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA
| | - Husayn F Ramji
- Oklahoma School of Science and Mathematics, Oklahoma City, Oklahoma, USA ; University of Oklahoma , Norman, Oklahoma , USA
| | - Dat Truong
- Oklahoma School of Science and Mathematics, Oklahoma City, Oklahoma, USA
| | - Ramesh Kumar
- Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA
| | - Kristi A Koelsch
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA ; Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA ; Department Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Mike Centola
- Haus Bioceuticals , Oklahoma City, Oklahoma , USA
| | - Adam Payne
- Haus Bioceuticals , Oklahoma City, Oklahoma , USA
| | | | - R Hal Scofield
- Department of Medicine , University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma , USA ; Oklahoma Medical Research Foundation , Arthritis & Clinical Immunology Program , Oklahoma City, Oklahoma , USA ; Department Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
41
|
Adeyemi O, Owoseni M. Polyphenolic content and biochemical evaluation of fijk, alomo, osomo and oroki herbal mixtures in vitro. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2015. [DOI: 10.1016/j.bjbas.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
42
|
Rouhollahi E, Moghadamtousi SZ, Al-Henhena N, Kunasegaran T, Hasanpourghadi M, Looi CY, Abd Malek SN, Awang K, Abdulla MA, Mohamed Z. The chemopreventive potential of Curcuma purpurascens rhizome in reducing azoxymethane-induced aberrant crypt foci in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3911-22. [PMID: 26251570 PMCID: PMC4524378 DOI: 10.2147/dddt.s84560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation in AOM-treated rats and may offer protection against colon cancer development.
Collapse
Affiliation(s)
- Elham Rouhollahi
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Nawal Al-Henhena
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Thubasni Kunasegaran
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohadeseh Hasanpourghadi
- Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Zahurin Mohamed
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Novel anti-angiogenic effects of aromatic-turmerone, essential oil isolated from spice turmeric. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Okoko T, Ere D. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract. Asian Pac J Trop Biomed 2015; 2:449-53. [PMID: 23569948 DOI: 10.1016/s2221-1691(12)60074-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/20/2011] [Accepted: 12/19/2011] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. METHODS Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. RESULTS Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. CONCLUSIONS The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.
Collapse
Affiliation(s)
- Tebekeme Okoko
- Biochemistry Programme, Department of Chemical Sciences, Niger Delta University, PMB 71, Wilberforce Island, Bayelsa State, Nigeria
| | | |
Collapse
|
45
|
Olugbami JO, Gbadegesin MA, Odunola OA. In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Pharmacognosy Res 2015; 7:49-56. [PMID: 25598635 PMCID: PMC4285649 DOI: 10.4103/0974-8490.147200] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/09/2014] [Accepted: 12/17/2014] [Indexed: 11/04/2022] Open
Abstract
Background: Reactive oxygen species (ROS) are implicated in various pathological conditions. Synthetic antioxidants have adverse health effects, while many medicinal plants have antioxidant components that can prevent the harmful effects of ROS. Objectives: This study quantitatively determined the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant properties of ethanol extract of the stem bark of Terminalia glaucescens (EESTG). Materials and Methods: The objectives were achieved based on in vitro assays. Data were analyzed by Sigma Plot (version 11.0). Results: Using gallic acid as the standard compound, TPC value obtained was 596.57 μg GAE/mg extract. TFC content of EESTG, determined as quercetin equivalent was 129.58 μg QE/mg extract. Furthermore, EESTG significantly (P < 0.001) displayed higher reducing power activity than the standard compounds (ascorbic acid and butylated hydroxytoluene [BHT]). Total antioxidant capacity assay, measured by phosphomolybdate method, was 358.33 ± 5.77 μg butylated hydroxytoluene equivalents [BHTE]/mg extract. β-carotene-linoleate bleaching method affirmed the potency of EESTG because of its significantly (P < 0.001) higher anti-oxidant activity when compared with quercetin and BHT. Based on DPPH assay, EESTG displayed significantly (P < 0.001) higher activity than BHT, while the hydroxyl radical scavenging activities of BHT and quercetin significantly (P < 0.001) exceeded that of the extract, although EESTG still displayed a high level of activity obtained as 83.77% in comparison to 92.80% of the standard compounds. Conclusion: Findings from this study indicate the presence of promisingly potent phytoconstituents in EESTG that have the capability to act as antioxidants and free radical scavengers.
Collapse
Affiliation(s)
- J Olorunjuwon Olugbami
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A Gbadegesin
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
46
|
Liju VB, Jeena K, Kumar D, Maliakel B, Kuttan R, IM K. Enhanced bioavailability and safety of curcumagalactomannosides as a dietary ingredient. Food Funct 2015; 6:276-86. [DOI: 10.1039/c4fo00749b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In spite of the various bioavailable formulations of curcumin for pharma and dietary supplement applications, food grade formulations suitable as a dietary ingredient, capable of providing significant levels of plasma curcumin, are limited.
Collapse
Affiliation(s)
| | - Kottarapat Jeena
- Department of Biochemistry
- Amala Cancer Research Centre
- Thrissur
- India
| | - Dinesh Kumar
- Research and Development Centre
- Akay Flavours & Aromatics Pvt Ltd
- Cochin 683561
- India
| | - Balu Maliakel
- Research and Development Centre
- Akay Flavours & Aromatics Pvt Ltd
- Cochin 683561
- India
| | - Ramadasan Kuttan
- Department of Biochemistry
- Amala Cancer Research Centre
- Thrissur
- India
| | - Krishnakumar IM
- Research and Development Centre
- Akay Flavours & Aromatics Pvt Ltd
- Cochin 683561
- India
| |
Collapse
|
47
|
Liju VB, Jeena K, Kuttan R. Gastroprotective activity of essential oils from turmeric and ginger. J Basic Clin Physiol Pharmacol 2015; 26:95-103. [PMID: 24756059 DOI: 10.1515/jbcpp-2013-0165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Turmeric (Curcuma longa) and ginger (Zingiber officianale) are widely used in Asian countries as traditional medicine and food ingredients. In the present study, we have evaluated the gastroprotective activity of turmeric essential oil (TEO) and ginger essential oil (GEO) in rats. METHODS Turmeric and ginger were evaluated for their antiulcer activity against ethanol-induced ulcers in male Wistar rats at different doses: 100, 500 and 1000 mg/kg body weight. Ethanol was used to induce gastric ulcer in Wistar rats. Parameters such as ulcer index, histopathology and levels of antioxidant enzymes such as glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase and glutathione (GSH) levels were measured to assess the degree of protection produced by the essential oils. RESULTS TEO and GEO inhibited ulcer by 84.7% and 85.1%, respectively, as seen from the ulcer index. Reduced antioxidant enzymes such as GPx, SOD, catalase and GSH produced by alcohol administration were significantly (p<0.001) increased by simultaneous administration of TEO and GEO. Histopathological examination showed that ethanol-induced lesions such as necrosis, erosion and hemorrhage of the stomach wall were significantly reduced after oral administration of essential oils. CONCLUSIONS RESULTS suggest that TEO and GEO could reduce the gastric ulcer in rat stomach as seen from the ulcer index and histopathology of the stomach. Moreover, oxidative stress produced by ethanol was found to be significantly reduced by TEO and GEO.
Collapse
|
48
|
Alok S, Jain SK, Verma A, Kumar M, Mahor A, Sabharwal M. Herbal antioxidant in clinical practice: a review. Asian Pac J Trop Biomed 2014; 4:78-84. [PMID: 24144136 DOI: 10.1016/s2221-1691(14)60213-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/11/2013] [Accepted: 12/20/2013] [Indexed: 01/21/2023] Open
Abstract
Antioxidant-the word itself is magic. Using the antioxidant concept as a spearhead in proposed mechanisms for staving off so-called "free-radical" reactions, the rush is on to mine claims for the latest and most effective combination of free-radical scavenging compounds. We must acknowledge that such "radicals" have definitively been shown to damage all biochemical components such as DNA/RNA, carbohydrates, unsaturated lipids, proteins, and micronutrients such as carotenoids (alpha and beta carotene, lycopene), vitamins A, B6, B12, and folate. Defense strategies against such aggressive radical species include enzymes, antioxidants that occur naturally in the body (glutathione, uric acid, ubiquinol-10, and others) and radical scavenging nutrients, such as vitamins A, C, and E, and carotenoids. This paper will present a brief discussion of some well- and little-known herbs that may add to the optimization of antioxidant status and therefore offer added preventive values for overall health. It is important to state at the outset that antioxidants vary widely in their free-radical quenching effects and each may be individually attracted to specific cell sites. Further evidence of the specialized nature of the carotenoids is demonstrated by the appearance of two carotenoids in the macula region of the retina where beta-carotene is totally absent.
Collapse
Affiliation(s)
- Shashi Alok
- Institute Of Pharmacy, Bundelkhand University, Jhansi (U.P.), India; Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences-Deemed University, Allahabad, U.P. India.
| | | | | | | | | | | |
Collapse
|
49
|
Liposomal formulation of turmerone-rich hexane fractions from Curcuma longa enhances their antileishmanial activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:694934. [PMID: 25045693 PMCID: PMC4087288 DOI: 10.1155/2014/694934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023]
Abstract
Promastigote forms of Leishmania amazonensis were treated with different concentrations of two fractions of Curcuma longa cortex rich in turmerones and their respective liposomal formulations in order to evaluate growth inhibition and the minimal inhibitory concentration (MIC). In addition, cellular alterations of treated promastigotes were investigated under transmission and scanning electron microscopies. LipoRHIC and LipoRHIWC presented lower MIC, 5.5 and 12.5 μg/mL, when compared to nonencapsulated fractions (125 and 250 μg/mL), respectively, and to ar-turmerone (50 μg/mL). Parasite growth inhibition was demonstrated to be dose-dependent. Important morphological changes as rounded body and presence of several roles on plasmatic membrane could be seen on L. amazonensis promastigotes after treatment with subinhibitory concentration (2.75 μg/mL) of the most active LipoRHIC. In that sense, the hexane fraction from the turmeric cortex of Curcuma longa incorporated in liposomal formulation (LipoRHIC) could represent good strategy for the development of new antileishmanial agent.
Collapse
|
50
|
Anandakumar S, Joseph JA, Bethapudi B, Agarwal A, Jung EB. Anti-inflammatory Effects of Turmeric (Curcuma longa L.) Extract on Acute and Chronic Inflammation Models. ACTA ACUST UNITED AC 2014. [DOI: 10.3746/jkfn.2014.43.4.612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|