1
|
Sbaraini N, Crombie A, Kalaitzis JA, Vuong D, Bracegirdle J, Windsor F, Lau A, Chen R, Tan YP, Lacey A, Lacey E, Piggott AM, Chooi YH. The aquastatin biosynthetic gene cluster encodes a versatile polyketide synthase capable of synthesising heteromeric depsides with diverse alkyl side chains. Chem Sci 2024:d4sc05557h. [PMID: 39479171 PMCID: PMC11514314 DOI: 10.1039/d4sc05557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Depsides have garnered substantial interest due to the diverse biological activities exhibited by members of this class. Among these are the antibacterial aquastatins, glycosylated heteromeric depsides formed through the condensation of orsellinic acid with corticiolic acid. In this work, we isolated aquastatins and the recently described geministatins, along with several novel aquastatin-related depsides with different alkyl side chains from the fungus Austroacremonium gemini MST-FP2131. The structures were determined through comprehensive spectroscopic analysis and chemical degradation. Genome mining and heterologous expression in Aspergillus nidulans and Saccharomyces cerevisiae revealed that aquastatin biosynthesis requires only two genes: a non-reducing polyketide synthase (SAT-KS-AT-PT-ACP-TE) and a glycosyltransferase. We demonstrated that the single polyketide synthase can synthesise an acetyl-primed orsellinic acid and alkylresorcylate with various chain lengths (C14, C16, or C18) by incorporating different long-chain acyl-CoAs as starter units, and then join these as heteromeric depsides. Using chemical degradation, we generated a series of analogues and showed that several aglycone depsides exhibit antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA), as well as antifungal and cytotoxic activities. Interestingly, heterologous expression of the aquastatin gene cluster in A. nidulans produced higher levels of geministatins with Δ15,16 and Δ18,19 double bonds, which have superior bioactivities compared to the aquastatins but are only present as minor compounds in the native fungus A. gemini.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Joe Bracegirdle
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Fraser Windsor
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Ashli Lau
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Rachel Chen
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Plant Pathology Herbarium Dutton Park QLD 4102 Australia
- Centre for Crop Health, University of Southern Queensland Toowoomba QLD 4350 Australia
| | - Alastair Lacey
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| |
Collapse
|
2
|
Gómez-Espinoza J, Riquelme C, Romero-Villegas E, Ahumada-Rudolph R, Novoa V, Méndez P, Millar C, Fernández-Alarcón N, Garnica S, Rajchenberg M, Cabrera-Pardo JR. Diversity of Agaricomycetes in southern South America and their bioactive natural products. Nat Prod Res 2024; 38:3389-3403. [PMID: 37661754 DOI: 10.1080/14786419.2023.2244126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Fungi have a unique metabolic plasticity allowing them to produce a wide range of natural products. Since the discovery of penicillin, an antibiotic of fungal origin, substantial efforts have been devoted globally to search for fungal-derived natural bioactive products. Andean region forests represent one of the few undisturbed ecosystems in the world with little human intervention. While these forests display a rich biological diversity, mycological and chemical studies in these environments have been scarce. This review aims to summarise all the efforts regarding the chemical or bioactivity analyses of Agaricomycetes (Basidiomycota) from southern South America environments. Overall, herein we report a total of 147 fungal species, 21 of them showing chemical characterisation and/or biological activity. In terms of chemical cores, furans, chlorinated phenol derivatives, polyenes, lactones, terpenes and himanimides have been reported. These natural products displayed a range of biological activities including antioxidant, antimicrobial, antifungal, neuroprotective and osteoclast-forming suppressing effects.
Collapse
Affiliation(s)
- Jonhatan Gómez-Espinoza
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Cristian Riquelme
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Micología, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Enzo Romero-Villegas
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Ramón Ahumada-Rudolph
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Vanessa Novoa
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Paola Méndez
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Camila Millar
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Naomi Fernández-Alarcón
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Sigisfredo Garnica
- Laboratorio de Micología, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Mario Rajchenberg
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Chubut, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Buenos Aires, Argentina
| | - Jaime R Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| |
Collapse
|
3
|
Feng KN, Zhang Y, Zhang M, Yang YL, Liu JK, Pan L, Zeng Y. A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone. Nat Commun 2023; 14:3436. [PMID: 37301868 PMCID: PMC10257657 DOI: 10.1038/s41467-023-39108-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Oxepinone rings represent one of structurally unusual motifs of natural products and the biosynthesis of oxepinones is not fully understood. 1,5-Seco-vibralactone (3) features an oxepinone motif and is a stable metabolite isolated from mycelial cultures of the mushroom Boreostereum vibrans. Cyclization of 3 forms vibralactone (1) whose β-lactone-fused bicyclic core originates from 4-hydroxybenzoate, yet it remains elusive how 4-hydroxybenzoate is converted to 3 especially for the oxepinone ring construction in the biosynthesis of 1. In this work, using activity-guided fractionation together with proteomic analyses, we identify an NADPH/FAD-dependent monooxygenase VibO as the key enzyme performing a crucial ring-expansive oxygenation on the phenol ring to generate the oxepin-2-one structure of 3. The crystal structure of VibO reveals that it forms a dimeric phenol hydroxylase-like architecture featured with a unique substrate-binding pocket adjacent to the bound FAD. Computational modeling and solution studies provide insight into the likely VibO active site geometry, and suggest possible involvement of a flavin-C4a-OO(H) intermediate.
Collapse
Affiliation(s)
- Ke-Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan-Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Fungal Depsides-Naturally Inspiring Molecules: Biosynthesis, Structural Characterization, and Biological Activities. Metabolites 2021; 11:metabo11100683. [PMID: 34677398 PMCID: PMC8540757 DOI: 10.3390/metabo11100683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022] Open
Abstract
Fungi represent a huge reservoir of structurally diverse bio-metabolites. Although there has been a marked increase in the number of isolated fungal metabolites over the past years, many hidden metabolites still need to be discovered. Depsides are a group of polyketides consisting of two or more ester-linked hydroxybenzoic acid moieties. They possess valuable bioactive properties, such as anticancer, antidiabetic, antibacterial, antiviral, anti-inflammatory, antifungal, antifouling, and antioxidant qualities, as well as various human enzyme-inhibitory activities. This review provides an overview of the reported data on fungal depsides, including their sources, biosynthesis, physical and spectral data, and bioactivities in the period from 1975 to 2020. Overall, 110 metabolites and more than 122 references are confirmed. This is the first review of these multi-faceted metabolites from fungi.
Collapse
|
5
|
Jacinto-Azevedo B, Valderrama N, Henríquez K, Aranda M, Aqueveque P. Nutritional value and biological properties of Chilean wild and commercial edible mushrooms. Food Chem 2021; 356:129651. [PMID: 33812191 DOI: 10.1016/j.foodchem.2021.129651] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
The nutritional value and biological properties of 24 samples of Chilean edible mushrooms were evaluated. The nutritional value was determined by measuring moisture, protein, fat, ash and carbohydrate contents. The biological activity was determined by using antibacterial, antifungal and antioxidant tests. The mushrooms showed high total carbohydrate (83.65-62.97 g/100 g dw) and crude protein (23.88-8.56 g/100 g dw) contents, but low fat contents (6.09-1.05 g/100 g dw). Ch2Cl2-extracts were more active against bacteria and fungi than MeOH-extracts. Ch2Cl2-extracts of B. loyo, C. lebre, L. edodes, M. conica and R. flava inhibited the growth of Gram-positive bacteria. The Ch2Cl2-extracts of A. cylindracea, B. loyo, and G. gargal showed strong effects against fungi. R. flava showed the highest phenolic content and antioxidant activity. The Chilean species B. loyo, C. lebre and G. gargal exhibited interesting nutritional value and biological properties, showing potential to be used as a dietary nutritional supplement.
Collapse
Affiliation(s)
- Benicio Jacinto-Azevedo
- Laboratory of Microbiology and Mycology Applied, Department of Agroindustries, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile
| | - Natalia Valderrama
- Laboratory of Microbiology and Mycology Applied, Department of Agroindustries, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile
| | - Karem Henríquez
- Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepción, Chile
| | - Mario Aranda
- Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontifical Catholic University of Chile, Santiago, Chile
| | - Pedro Aqueveque
- Laboratory of Microbiology and Mycology Applied, Department of Agroindustries, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile.
| |
Collapse
|
6
|
In Depth Natural Product Discovery from the Basidiomycetes Stereum Species. Microorganisms 2020; 8:microorganisms8071049. [PMID: 32679785 PMCID: PMC7409058 DOI: 10.3390/microorganisms8071049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Natural metabolites from microorganisms play significant roles in the discovery of drugs, both for disease treatments in humans, and applications in agriculture. The Basidiomycetes Stereum genus has been a source of such bioactive compounds. Here we report on the structures and activities of secondary metabolites from Stereum. Their structural types include sesquiterpenoids, polyketides, vibralactones, triterpenoids, sterols, carboxylic acids and saccharides. Most of them showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, radical scavenging activity, autophagy inducing activity, inhibiting pancreatic lipase against malarial parasite, nematocidal and so on. The syntheses of some metabolites have been studied. In this review, 238 secondary metabolites from 10 known species and various unidentified species of Stereum were summarized over the last seven decades.
Collapse
|
7
|
Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent). Food Chem Toxicol 2017; 109:1048-1054. [DOI: 10.1016/j.fct.2017.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
|
8
|
Aqueveque PM, Cespedes CL, Kubo I, Seigler DS, Sterner O. The impact of Andean Patagonian mycoflora in the search for new lead molecules. Ann N Y Acad Sci 2017. [PMID: 28640968 DOI: 10.1111/nyas.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secondary metabolites from fungi have become a major source of chemical innovation in programs searching for lead molecules with bioactivities, especially over the last 50 years. In this review, we discuss the fundamental considerations in the discovery of molecules for agricultural and medicinal uses. This group of organisms possesses a strong potential for scientific and industrial communities. Recently, the incorporation of new technologies for the artificial cultivation of fungi and the use of better equipment to isolate and identify active metabolites has allowed the discovery of leading molecules for the design of new and safer drugs and pesticides. The geographical region including the Patagonian Andes mountains harbors a wide diversity of fungi, many of them still unknown and so far associated with Chilean-Argentinian Andean endemic forests. There have been very few chemical studies of the fungi located in this region. However, those few studies have allowed the discovery of new molecules. We argue that the richness of fungal biodiversity in this region offers an interesting source for the discovery of bioactive molecules for the basic and applied sciences.
Collapse
Affiliation(s)
- Pedro M Aqueveque
- Laboratory of Applied Microbiology and Mycology, Agroindustry Department, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile
| | - Carlos L Cespedes
- Laboratory of Chemical-Ecology, Basic Science Department, Faculty of Sciences, Universidad del Bio Bio, Chillan, Chile
| | - Isao Kubo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - David S Seigler
- Plant Biology Department, Herbarium ILL, University of Illinois, Urbana-Champaign, Illinois
| | - Olov Sterner
- Division of Organic and Bioorganic Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Schwenk D, Brandt P, Blanchette RA, Nett M, Hoffmeister D. Unexpected Metabolic Versatility in a Combined Fungal Fomannoxin/Vibralactone Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2016; 79:1407-1414. [PMID: 27104866 DOI: 10.1021/acs.jnatprod.6b00147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The secondary metabolome of an undescribed stereaceous basidiomycete (BY1) was investigated for bioactive compounds. Along with a known fomannoxin derivative and two known vibralactones, we here describe three new compounds of these natural product families, whose structures were elucidated using 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. The new compound vibralactone S (4) shows a 3,6-substituted oxepin-2(7H)-one ring system, which is unprecedented for the vibralactone/fomannoxin class of compounds. Stable isotope labeling established a biosynthetic route that is dissimilar to the two published cascades of oxepinone formation. Another new compound, the antifungal methyl seco-fomannoxinate (6), features a 2-methylprop-1-enyl ether moiety, which is only rarely observed with natural products. The structure of 6 was confirmed by total synthesis. (13)C-labeling experiments revealed that the unusual 2-methylprop-1-enyl ether residue derives from an isoprene unit. The diversity of BY1's combined fomannoxin/vibralactone metabolism is remarkable in that these compound families, although biosynthetically related, usually occur in different organisms.
Collapse
Affiliation(s)
- Daniel Schwenk
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Philip Brandt
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Robert A Blanchette
- Plant Pathology, University of Minnesota , 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
- Department of Biochemical and Chemical Engineering, Technical Biology, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
11
|
Cespedes CL, Alarcon J, Aqueveque PM, Lobo T, Becerra J, Balbontin C, Avila JG, Kubo I, Seigler DS. New environmentally-friendly antimicrobials and biocides from Andean and Mexican biodiversity. ENVIRONMENTAL RESEARCH 2015; 142:549-562. [PMID: 26298556 DOI: 10.1016/j.envres.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Persistent application of pesticides often leads to accumulation in the environment and to the development of resistance in various organisms. These chemicals frequently degrade slowly and have the potential to bio-accumulate across the food chain and in top predators. Cancer and neuronal damage at genomic and proteomic levels have been linked to exposure to pesticides in humans. These negative effects encourage search for new sources of biopesticides that are more "environmentally-friendly" to the environment and human health. Many plant or fungal compounds have significant biological activity associated with the presence of secondary metabolites. Plant biotechnology and new molecular methods offer ways to understand regulation and to improve production of secondary metabolites of interest. Naturally occurring crop protection chemicals offer new approaches for pest management by providing new sources of biologically active natural products with biodegradability, low mammalian toxicity and environmentally-friendly qualities. Latin America is one of the world's most biodiverse regions and provide a previously unsuspected reservoir of new and potentially useful molecules. Phytochemicals from a number of families of plants and fungi from the southern Andes and from Mexico have now been evaluated. Andean basidiomycetes are also a great source of scientifically new compounds that are interesting and potentially useful. Use of biopesticides is an important component of integrated pest management (IPM) and can improve the risks and benefits of production of many crops all over the world.
Collapse
Affiliation(s)
- Carlos L Cespedes
- Phytochemical-Ecology, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile.
| | - Julio Alarcon
- Synthesis/Biotransformation of Natural Products Labs, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Pedro M Aqueveque
- Laboratorio de Microbiología y Micología Aplicada, Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillan, Chile
| | - Tatiana Lobo
- Escuela de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia sede Medellin, Colombia
| | - Julio Becerra
- Synthesis/Biotransformation of Natural Products Labs, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Cristian Balbontin
- Phytochemical-Ecology, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Jose G Avila
- Laboratorio de Fitoquimica, Unidad UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, Mexico DF, Mexico
| | - Isao Kubo
- ESPM Departmenty, University of California at Berkeley, CA, USA
| | - David S Seigler
- Department of Plant Biology, Herbarium, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|