1
|
Siddique Choudhry S, Mehmood H, Haroon M, Akhtar T, Tahir E, Ehsan M, Musa M. Structure-Activity Relationship of Hydrazinylthiazole-5-Carbaldehydes as Potential Anti-Diabetic Agents. Chem Biodivers 2024; 21:e202400305. [PMID: 39122648 DOI: 10.1002/cbdv.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Diabetes is an emerging threat to the world due to large number of deaths reported within the last decade. To overcome its spread and complications, herein, we reported synthesis and anti-diabetic potential of twelve novel 2-[(arylidenyl)methylidene]hydrazinyl-1,3-thiazole-5-carbaldehydes (3 a-l). All compounds have shown good to excellent α-amylase inhibitory activity, among them ortho substituted analogues, the compound 3 a (IC50=14.6 mM) and 3 l (IC50=17.9 mM) showed excellent inhibition potential due to the strong electron donating nature of the substituents attached at the aryl ring. The compounds 3 a-3 h (IC50=6.70-10.80 ppm) exhibited excellent anti-glycation potential as compared to standard amino-guanidine (IC50=11.92 ppm). Almost all the tested compounds are found biocompatible and very safe to the human erythrocyte cells at all tested concentrations. The molecular docking results have found that the binding energy score of all the tested compounds against human serum albumin protein (pdb: 1AO6) is between -5.1827 and -6.8661 kcal/mol which is far better than standard amino-guanidine (-4.234 kcal/mol).
Collapse
Affiliation(s)
- Sabah Siddique Choudhry
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250, Mirpur (AJK), Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250, Mirpur (AJK), Pakistan
| | - Muhammad Haroon
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250, Mirpur (AJK), Pakistan
| | - Ehsaan Tahir
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250, Mirpur (AJK), Pakistan
| | - Muhammad Ehsan
- Bionano-Chemistry Lab, Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Korea
| | - Mustapha Musa
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| |
Collapse
|
2
|
Kazmi MT, Amir M, Iqbal MA, Rashid M, Husain A. Thiazolobenzamide-Naphthalene Hybrids as Potent Anticancer agents compared to Doxorubicin: Design, Synthesis, SAR, In-silico and Toxicity Analysis. Chem Biodivers 2024; 21:e202301662. [PMID: 38086017 DOI: 10.1002/cbdv.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
In order to determine whether thiazolobenzamide molecules connected to naphthalene could inhibit the growth of three different tumor cell lines, MCF7 (breast carcinoma), A549 (pulmonary carcinoma), and DU145 (prostatic adenocarcinoma) a novel series of ten molecules, designated TA 1-10, was designed, synthesized, and tested. Among these compounds, TA7 showed promising results against cell lines, especially showing exceptional efficacy against breast cancer. Antioxidant activity tests consistently showed the best performance from the TA7 molecule. Furthermore, when a dose of 50 to 500 mg/kg of the total mass of rats is given, the most effective chemical, TA7, did not exhibit any harmful effects during acute oral toxicity tests. The biochemical indicators (SGOT and SGPT) for hepatotoxicity associated with compound TA7 were found to be fairly similar to those of the control group. The findings from molecular docking, XP visualization, and MM-GBSA dG binding investigations are in agreement with the outcomes of in-vitro tests of antioxidant and anticancer capabilities. TA7 was the most effective compound among those that were docked; it bound free energy and had adequate properties for metabolism (biochemical processes), distribution (dispersion), absorption (assimilation), and excretion (elimination). This study found that the TA7 molecule, a thiazole ring system derivative connected to naphthalene, is to be a promising and possible anticancer agent and its efficacy may be further explored in clinical studies.
Collapse
Affiliation(s)
- Mohammad Taha Kazmi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Mohd Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Md Azhar Iqbal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Al-Qassim, Saudi Arabia
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| |
Collapse
|
3
|
Haroon M, Akhtar T, Mehmood H, da Silva Santos AC, da Conceição JM, Brondani GL, Silva Tibúrcio RD, Galindo Bedor DC, Viturino da Silva JW, Sales Junior PA, Alves Pereira VR, Lima Leite AC. Synthesis of hydrazinyl-thiazole ester derivatives, in vitro trypanocidal and leishmanicidal activities. Future Med Chem 2024; 16:221-238. [PMID: 38269432 DOI: 10.4155/fmc-2023-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Aim: To synthesize novel more potent trypanocidal and leishmanicidal agents. Methods: Hantzsch's synthetic strategy was used to synthesize 1,3-thiazole-4-carboxylates and their N-benzylated derivatives. Results: 28 new thiazole-carboxylates and their N-benzylated derivatives were established to test their trypanocidal and leishmanicidal activities. From both series, compounds 3b, 4f, 4g, 4j and 4n exhibited a better or comparable trypanocidal profile to benznidazole. Among all tested compounds, 4n was found to be the most potent and was better than benznidazole. Conclusion: Further variation of substituents around 1,3-thiazole-4-carboxylates and or hydrazinyl moiety may assist in establishing better and more potent trypanocidal and leishmanicidal agents.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry & Biochemistry, Miami University, 651 E High Street, Oxford, OH 45056, USA
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | | | - Juliana M da Conceição
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Graziella Leite Brondani
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Robert da Silva Tibúrcio
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Danilo C Galindo Bedor
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José W Viturino da Silva
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | | | | | - Ana C Lima Leite
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
4
|
Iqbal Y, Akhtar T, Haroon M, Mehmood H, Nizami T, Tahir E, Ehsan M. 4-Adamantyl-(2-(arylidene)hydrazinyl)thiazoles as potential antidiabetic agents: experimental and docking studies. Future Med Chem 2023; 15:599-613. [PMID: 37140092 DOI: 10.4155/fmc-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: To develop an efficient and cost-effective antidiabetic agent. Methods: A simple and convenient Hantzsch synthetic strategy was used to prepare 4-adamantyl-(2-(arylidene)hydrazinyl)thiazoles. Results: Fifteen newly established structures of 4-adamantyl-(2-(arylidene)hydrazinyl)thiazoles were tested for their α-amylase, antiglycation and antioxidant activities. Almost all tested compounds showed excellent α-amylase inhibition. Compounds 3a and 3j exhibited the highest potency, with IC50 values of 16.34 ± 2.67 and 16.64 ± 1.12 μM, respectively. Compounds 3c and 3i exhibited comparable antiglycation potential with the standard, aminoguanidine. The antioxidant potential of compound 3g was found to be excellent, with an IC50 value of 28.19 ± 0.2563 μM. The binding interactions of compound 3a (binding energy = -8.833 kcal/mol) with human pancreatic α-amylase identified 3a as a potent α-amylase inhibitor. Conclusion: Enrichment of established structures with more electron-donating functionalities may assist/lead to the development of more potent antidiabetic drugs.
Collapse
Affiliation(s)
- Yasir Iqbal
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
- Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur (Affiliated with Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, USA
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Tauqir Nizami
- Deputy Director ORIC, University of Chakwal, Punjab, Pakistan
| | - Ehsaan Tahir
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Muhammad Ehsan
- Bionano-Chemistry Lab, Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
5
|
Bertašiūtė M, Kavaliauskas P, Vaickelionienė R, Grybaitė B, Petraitis V, Petraitienė R, Naing E, Garcia A, Šiugždaitė J, Lelešius R, Mickevičius V. Synthesis of 1-(2-Hydroxyphenyl)- and (3,5-Dichloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as Promising Scaffolds for the Development of Novel Antimicrobial and Anticancer Agents. Int J Mol Sci 2023; 24:ijms24097966. [PMID: 37175673 PMCID: PMC10178429 DOI: 10.3390/ijms24097966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing antimicrobial resistance among Gram-positive pathogens and pathogenic fungi remains one of the major public healthcare threats. Therefore, novel antimicrobial candidates and scaffolds are critically needed to overcome resistance in Gram-positive pathogens and drug-resistant fungal pathogens. In this study, we explored 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid and its 3,5-dichloro-2-hydroxyphenyl analogue for their in vitro antimicrobial activity against multidrug-resistant pathogens. The compounds showed structure-dependent antimicrobial activity against Gram-positive pathogens (S. aureus, E. faecalis, C. difficile). Compounds 14 and 24b showed promising activity against vancomycin-intermediate S. aureus strains, and favorable cytotoxic profiles in HSAEC-1 cells, making them attractive scaffolds for further development. 5-Fluorobenzimidazole, having a 3,5-dichloro-2-hydroxyphenyl substituent, was found to be four-fold, and hydrazone, with a thien-2-yl fragment, was two-fold stronger than clindamycin against methicillin resistant S. aureus TCH 1516. Moreover, hydrazone, bearing a 5-nitrothien-2-yl moiety, showed promising activity against three tested multidrug-resistant C. auris isolates representing major genetic lineages (MIC 16 µg/mL) and azole-resistant A. fumigatus strains harboring TR34/L98H mutations in the CYP51A gene. The anticancer activity characterization demonstrated that the 5-fluorobenzimidazole derivative with a 3,5-dichloro-2-hydroxyphenyl substituent showed the highest anticancer activity in an A549 human pulmonary cancer cell culture model. Collectively these results demonstrate that 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives could be further explored for the development of novel candidates targeting Gram-positive pathogens and drug-resistant fungi.
Collapse
Affiliation(s)
- Monika Bertašiūtė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland Baltimore School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Rūta Petraitienė
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Andrew Garcia
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Jūratė Šiugždaitė
- Department of Pathobiology, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Raimundas Lelešius
- Department of Pathobiology, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| |
Collapse
|
6
|
Iqbal H, Akhtar T, Haroon M, Aktaş A, Tahir E, Ehsan M. Synthesis of Thiazole-Chalcone Hybrid Molecules: Antioxidant, Alpha(α)-Amylase Inhibition and Docking Studies. Chem Biodivers 2023; 20:e202201134. [PMID: 37052518 DOI: 10.1002/cbdv.202201134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
The molecular hybrid approach is very significant to combat various drug-resistant disorders. A simple, convenient, and cost-effective synthesis of thiazole-based chalcones is accomplished, using a molecular hybrid approach, in two steps. The compound 1-(2-phenylthiazol-4-yl)ethanone (3) was used as the main intermediate for the synthesis of 3-(arylidene)-1-(2-phenylthiazol-4-yl)prop-2-en-1-ones (4a-f). Thin layer chromatography was used to testify the formation and purity of all synthesized compounds. Further structural confirmation of all compounds was achieved via different spectroscopic techniques (UV, FT-IR, 1 H- and 13 C-NMR) and elemental analysis. All synthesized compounds were tested for their α-amylase inhibition and antioxidant potential. The cytotoxic property of compounds was also tested with in vitro haemolytic assay. All tested compounds showed moderate to excellent α-amylase inhibition and antioxidant activity. All tested compounds are found safe to use due to their less toxicity when compared to the standard Triton X. The molecular docking simulation study of all synthesized compounds was also conducted to examine the best binding interactions with human pancreatic α-amylase (pdb: 4 W93) using AutodockVina. The molecular docking results authenticated the in vitro amylase inhibition results, i.e., 3-(3-Methoxyphenyl)-1-(2-phenylthiazol-4-yl)prop-2-en-1-one (4e) exhibited lowest IC50 value 54.09±0.11 μM with a binding energy of -7.898 kcal/mol.
Collapse
Affiliation(s)
- Hafsa Iqbal
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
- Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur, Affiliated with Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Aydın Aktaş
- Inonu University, Vocational School of Health Service, 44280-, Malatya, Türkiye
| | - Ehsaan Tahir
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Muhammad Ehsan
- Bionano-Chemistry Lab, Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
7
|
Haroon M, Akhtar T, Khalid M, Zahra SS, Haq IU, Assiri MA, Imran M, Braga AA. Synthesized thiazole-based hydrazides and their spectral characterization along with biological studies: Promising quantum chemical insights. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Alia Abdulaziz Alfi, Alharbi A, Qurban J, Abualnaja MM, Abumelha HM, Saad FA, El-Metwaly NM. Molecular modeling and docking studies of new antioxidant pyrazole-thiazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Kılınç N. Resorcinol Derivatives as Novel Aldose Reductase Inhibitors: In Silico and
In Vitro Evaluation. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220414103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The polyol pathway, an alternative way of carbohydrate metabolism, is activated
by hyperglycemia. Aldose reductase (AR), the first and rate-limiting enzyme of the polyol pathway, is
responsible for the reduction of glucose to sorbitol. Inhibiting the aldose reductase enzyme and reducing
the polyol pathway is considered an effective method to prevent and postpone the onset of diabetic complications.
Objective:
Therefore, in this work, we investigate the inhibition effects of certain resorcinol derivatives
and the positive control compound quercetin on the AR enzyme in vitro and in silico. These phenolic
compounds, whose inhibitory effects on the AR enzyme were investigated, were also compared with
known drugs in terms of their drug-like characteristics.
Methods:
Three methods were used to determine the inhibitory effects of resorcinol derivatives on recombinant
human AR enzyme. After the in vitro inhibition effects were determined spectrophotometrically,
the binding energy and binding modes were determined by molecular docking method. Finally, the
MM-GBSA method was used to determine the free binding energies of the inhibitors for the AR enzyme.
Results:
5-pentylresorcinol compound showed the strongest inhibition effect on recombinant human AR
enzyme with an IC50 value of 9.90 μM. The IC50 values of resorcinol, 5-methylresorcinol, 4-
ethylresorcinol, 4-hexylresorcinol, 2-methylresorcinol, and 2,5-dimethylresorcinol compounds were determined
as 49.50 μM, 43.31 μM, 19.25 μM, 17.32 μM, 28.87 μM, 57.75 μM, respectively.
Conclusion:
The results of this research showed that resorcinol compounds are effective AR inhibitors.
These findings are supported by molecular docking, molecular mechanics, and ADME investigations
undertaken to corroborate the experimental in vitro results.
Collapse
Affiliation(s)
- Namık Kılınç
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, Igdir, Turkey
| |
Collapse
|
10
|
Iqbal Y, Haroon M, Akhtar T, Ashfaq M, Tahir MN, Rasheed L, Yousuf M, Zia MA. Synthesis, Spectroscopic Characterization, Single Crystal XRD, Hirshfeld Surface Analysis and Theoretical Studies (DFT) of 4-Adamantyl-(2-(substitutedbenzylidene)hydrazinyl)thiazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Muhammad S, Saba A, Khera RA, Al-Sehemi AG, Algarni H, Iqbal J, Alshahrani MY, Chaudhry AR. Virtual screening of potential inhibitor against breast cancer-causing estrogen receptor alpha (ERα): molecular docking and dynamic simulations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2072840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Afsheen Saba
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah. G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - H. Algarni
- Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
12
|
Chaudhry AR, Alhujaily M, Muhammad S, Elbadri GA, Belali TM, Al-Sehemi AG. Insighting the optoelectronic, charge transfer and biological potential of benzo-thiadiazole and its derivatives. Z NATURFORSCH C 2022; 77:403-415. [PMID: 35438853 DOI: 10.1515/znc-2021-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/15/2022]
Abstract
The current investigation applies the dual approach containing quantum chemical and molecular docking techniques to explore the potential of benzothiadiazole (BTz) and its derivatives as efficient electronic and bioactive materials. The charge transport, electronic and optical properties of BTz derivatives are explored by quantum chemical techniques. The density functional theory (DFT) and time dependent DFT (TD-DFT) at B3LYP/6-31G** level of theory utilized to optimize BTz and newly designed ligands at the ground and first excited states, respectively. The heteroatoms substitution effects on different properties of 4,7-bis(4-methylthiophene-2yl) benzo[c] [1,2,5]thiadiazole (BTz2T) as initial compound are studied at molecular level. Additionally, we also study the possible inhibition potential of COVID-19 from benzothiadiazole (BTz) containing derivatives by implementing the grid based molecular docking methods. All the newly designed ligands docked with the main protease (MPRO:PDB ID 6LU7) protein of COVID-19 through molecular docking methods. The studied compounds showed strong binding affinities with the binding site of MPRO ranging from -6.9 to -7.4 kcal/mol. Furthermore, the pharmacokinetic properties of the ligands are also studied. The analysis of these results indicates that the studied ligands might be promising drug candidates as well as suitable for photovoltaic applications.
Collapse
Affiliation(s)
- Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, Bisha 61922, P.O. Box 334, Saudi Arabia.,Deanship of Scientific Research, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Muhanad Alhujaily
- Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Gamal A Elbadri
- Department of Biology, College of Science, University of Bisha, Bisha 61922, P.O. Box 334, Saudi Arabia
| | - Tareg M Belali
- Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
13
|
Muhammad S, Qaisar M, Iqbal J, Khera RA, Al-Sehemi AG, Alarfaji SS, Adnan M. Exploring the inhibitory potential of novel bioactive compounds from mangrove actinomycetes against nsp10 the major activator of SARS-CoV-2 replication. CHEMICAL PAPERS 2022; 76:3051-3064. [PMID: 35103034 PMCID: PMC8791767 DOI: 10.1007/s11696-021-01997-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023]
Abstract
The current study reveals the inhibitory potential of novel bioactive compounds of mangrove actinomycetes against nsp10 of SARS-CoV-2. A total of fifty (50) novel bioactive (antibacterial, antitumor, antiviral, antioxidant, and anti-inflammatory) compounds of mangrove actinomycetes from different chemical classes such as alkaloids, dilactones, sesquiterpenes, macrolides, and benzene derivatives are used for interaction analysis against nsp10 of SARS-CoV-2. The six antiviral agents sespenine, xiamycin c, xiamycin d, xiamycin e, xiamycin methyl ester, and xiamycin A (obeyed RO5 rule) are selected based on higher binding energy, low inhibition constant values, and better-docked positions. The effective hydrogen and hydrophobic (alkyl, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π–sigma, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π T shaped and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π-alkyl) interaction analysis reveals the four antivirals sespenine, xiamycin C, xiamycin methyl ester, and xiamycin A are supposed to be the most auspicious inhibitors against nsp10 of SARS-CoV-2. Quantum chemistry methods such as frontier molecular orbitals and molecular electrostatic potential are used to explain the thermal stability and chemical reactivity of ligands. The toxicity profile shows that selected ligands are safe by absorption, distribution, metabolism, excretion, and toxicity profiling and also effective for inhibition of nsp10 protein of SARS-CoV-2. The molecular dynamic simulation investigation of apo and halo forms of nsp10 done by RMSD of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α atoms of nsp10, all amino acid residues RMSF, count total number of hydrogen bonds and radius of gyration (Rg). MD simulations reveal the complexes are stable and increase the structural compactness of nsp10 in the binding pocket. The lead antiviral compounds sespenine, xiamycin C, xiamycin methyl ester, and xiamycin A are recommended as the most promising inhibitors against nsp10 of SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413 Saudi Arabia
| | - Mahnoor Qaisar
- Department of Chemistry, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413 Saudi Arabia
| | - Saleh S Alarfaji
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413 Saudi Arabia
| | - Muhammad Adnan
- Department of Chemistry, Graduate School, Chosun University, Gwangju, 501-759 Republic of Korea
| |
Collapse
|