1
|
Raji F, Maghool S, Shayesteh H, Rahbar-Kelishami A. Effective adsorptive removal of Pb 2+ ions from aqueous solution using functionalized agri-waste biosorbent: New green mediation via Seidlitzia rosmarinus extract. CHEMOSPHERE 2024; 363:142759. [PMID: 38969218 DOI: 10.1016/j.chemosphere.2024.142759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Currently, the use of natural adsorbent for the elimination of pollutants, such as heavy metals, from water has been extensively investigated. However, the low adsorption capacity of these natural adsorbents has led researchers towards the use of synthetic surfactants, which themselves can become environmental pollutants. In this research, an investigation was conducted to examine the impact of a surfactant obtained from the Seidlitzia rosmarinus plant on the adsorption properties of Pumpkin seed shell (PSS), a natural adsorbent. As a result, a modified version of PSS, known as functionalized Pumpkin seed shell (FPSS), was developed, and the effect of these two adsorbents on the elimination of Pb2+ has been investigated. FESEM, EDS, FTIR, and BET analyses were conducted to get detailed information of the adsorbent. Additionally, the effects of contact time, dosage of the adsorbent, pH of the solution, and temperature on the adsorbent were studied. The experimental data was fitted using Langmuir, Freundlich, Temkin, and Jovanovic isotherms. The PSS adsorbent was fitted best with the Langmuir isotherm, showing an adsorption capacity of 160.80 mg g-1, while the FPSS adsorbent was fitted with the Jovanovic isotherm, exhibiting an adsorption capacity of 553.57 mg g-1. Furthermore, kinetic modeling results indicated that the data for these adsorbents follow pseudo-second-order kinetic. Finally, the impact of coexisting ions and reusability was examined, with the FPSS adsorbent outperforming PSS. Therefore, the investigation of all these aspects demonstrated that the use of this natural surfactant significantly improves the performance of the adsorbent.
Collapse
Affiliation(s)
- Farshad Raji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sina Maghool
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Hadi Shayesteh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| | - Ahmad Rahbar-Kelishami
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| |
Collapse
|
2
|
Chenet T, Schwarz G, Neff C, Hattendorf B, Günther D, Martucci A, Cescon M, Baldi A, Pasti L. Scallop shells as biosorbents for water remediation from heavy metals: Contributions and mechanism of shell components in the adsorption of cadmium from aqueous matrix. Heliyon 2024; 10:e29296. [PMID: 38601540 PMCID: PMC11004421 DOI: 10.1016/j.heliyon.2024.e29296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To ascertain their potential for heavy metal pollution remedy, we studied the adsorption mechanism of cadmium onto scallop shells and the interactions between the heavy metal and the shell matrix. Intact shells were used to investigate the uptake and diffusion of the metal contaminant onto the shell carbonatic layers, as well as to evaluate the distribution of major and trace elements in the matrix. LA-ICPMS measurements demonstrate that Cd is adsorbed on a very thin layer on the inner and outer surfaces of the shell. Structural and thermal analyses showed the presence of 9 wt.-% of a CdCO3 phase indicating that the adsorption is mainly a superficial process which involves different processes, including ion exchange of Ca by Cd. In addition, organic components of the shell could contribute to adsorption as highlighted by different metal uptake observed for shells with different colours. In particular, darker shells appeared to adsorb more contaminant than the white ones. The contribution of the organic shell components on the adsorption of heavy metals was also highlighted by the element bulk content which showed higher concentrations of different metals in the darker specimen. Raman spectroscopy allowed to identify the pigments as carotenoids, confirmed by XRD measurements which highlighted the presence of astaxanthin phases. The results presented here provide new insights into the Cd adsorption mechanism highlighting the important contribution given by the organic components present in the biogenic carbonate matrix. Furthermore, the high efficiency of Cd removal from water by scallop shells, supported by adsorption kinetic and isotherm studies, has been demonstrated.
Collapse
Affiliation(s)
- Tatiana Chenet
- Department of Environment and Prevention Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| | - Gunnar Schwarz
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Christoph Neff
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Bodo Hattendorf
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Detlef Günther
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Annalisa Martucci
- Department of Physics and Earth Science, University of Ferrara, Via Saragat, 1, 44122, Ferrara, Italy
| | - Mirco Cescon
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| | - Andrea Baldi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| | - Luisa Pasti
- Department of Environment and Prevention Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| |
Collapse
|
3
|
Al-Anber MA, Al Ja’afreh M, Al-Momani IF, Hijazi AK, Sobola D, Sagadevan S, Al Bayaydah S. Loading of Silver (I) Ion in L-Cysteine-Functionalized Silica Gel Material for Aquatic Purification. Gels 2023; 9:865. [PMID: 37998955 PMCID: PMC10670454 DOI: 10.3390/gels9110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The L-cysteine-functionalized silica (SG-Cys-Na+) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-Cys-Na+ reached 98% at pHi = 6, 80 rpm, 1 mg L-1, and a temperature of 55 °C. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-Cys-Na+ active sites, forming a homogeneous monolayer (R2 = 0.999), as confirmed by FTIR spectroscopy. XRD analysis indicated matrix stability and the absence of Ag2O and Ag(0) phases, observed from diffraction peaks. The pseudo-second-order model (R2 > 0.999) suggested chemisorption-controlled adsorption, involving chemical bonding between silver ions and SG-Cys-Na+ surface. Thermodynamic parameters were calculated, indicating higher initial concentrations leading to increased equilibrium constants, negative ΔG values, positive ΔS values, and negative ΔH. This study aimed to explore silver ion saturation on silica surfaces and the underlying association mechanisms. The capability to capture and load silver (I) ions onto functionalized silica gel materials holds promise for environmental and water purification applications.
Collapse
Affiliation(s)
- Mohammed A. Al-Anber
- Laboratory of Inorganic Materials and Polymers, Department of Chemistry, Faculty of Sciences, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Malak Al Ja’afreh
- Laboratory of Inorganic Materials and Polymers, Department of Chemistry, Faculty of Sciences, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Idrees F. Al-Momani
- Department of Chemistry, Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Ahmed K. Hijazi
- Department of Chemistry, Faculty of Sciences and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Dinara Sobola
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Salsabeel Al Bayaydah
- Laboratory of Inorganic Materials and Polymers, Department of Chemistry, Faculty of Sciences, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| |
Collapse
|
4
|
Fakhry H, Ghoniem AA, Al-Otibi FO, Helmy YA, El Hersh MS, Elattar KM, Saber WIA, Elsayed A. A Comparative Study of Cr(VI) Sorption by Aureobasidium pullulans AKW Biomass and Its Extracellular Melanin: Complementary Modeling with Equilibrium Isotherms, Kinetic Studies, and Decision Tree Modeling. Polymers (Basel) 2023; 15:3754. [PMID: 37765609 PMCID: PMC10537747 DOI: 10.3390/polym15183754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Melanin as a natural polymer is found in all living organisms, and plays an important role in protecting the body from harmful UV rays from the sun. The efficiency of fungal biomass (Aureobasidium pullulans) and its extracellular melanin as Cr(VI) biosorbents was comparatively considered. The efficiency of Cr(VI) biosorption by the two sorbents used was augmented up to 240 min. The maximum sorption capacities were 485.747 (fungus biomass) and 595.974 (melanin) mg/g. The practical data were merely fitted to both Langmuir and Freundlich isotherms. The kinetics of the biosorption process obeyed the pseudo-first-order. Melanin was superior in Cr(VI) sorption than fungal biomass. Furthermore, four independent variables (contact time, initial concentration of Cr(VI), biosorbent dosage, and pH,) were modeled by the two decision trees (DTs). Conversely, to equilibrium isotherms and kinetic studies, DT of fungal biomass had lower errors compared to DT of melanin. Lately, the DTs improved the efficacy of the Cr(VI) removal process, thus introducing complementary and alternative solutions to equilibrium isotherms and kinetic studies. The Cr(VI) biosorption onto the biosorbents was confirmed and elucidated through FTIR, SEM, and EDX investigations. Conclusively, this is the first report study attaining the biosorption of Cr(VI) by biomass of A. pullulans and its extracellular melanin among equilibrium isotherms, kinetic study, and algorithmic decision tree modeling.
Collapse
Affiliation(s)
- Hala Fakhry
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11865, Egypt
- Department of Aquatic Environmental Science, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Abeer A. Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Mohammed S. El Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
5
|
Kamaruddin NAL, Taha MF, Wilfred CD. Synthesis and Characterization of Novel Thiosalicylate-based Solid-Supported Ionic Liquid for Removal of Pb(II) Ions from Aqueous Solution. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020830. [PMID: 36677888 PMCID: PMC9861467 DOI: 10.3390/molecules28020830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The main objectives of this study are to synthesize a new solid-supported ionic liquid (SSIL) that has a covalent bond between the solid support, i.e., activated silica gel, with thiosalicylate-based ionic liquid and to evaluate the performance of this new SSIL as an extractant, labelled as Si-TS-SSIL, and to remove Pb(II) ions from an aqueous solution. In this study, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium thiosalicylate ([MTMSPI][TS]) ionic liquid was synthesized and the formation of [MTMSPI][TS] was confirmed through structural analysis using NMR, FTIR, IC, TGA, and Karl Fischer Titration. The [MTMSPI][TS] ionic liquid was then chemically immobilized on activated silica gel to produce a new thiosalicylate-based solid-supported ionic liquid (Si-TS-SSIL). The formation of these covalent bonds on Si-TS-SSIL was confirmed by solid-state NMR analysis. Meanwhile, BET analysis was performed to study the surface area of the activated silica gel and the prepared Si-TS-SSIL (before and after washing with solvent) with the purpose to show that all physically immobilized [MTMSPI][TS] has been washed off from Si-TS-SSIL, leaving only chemically immobilized [MTMSPI][TS] on Si-TS-SSIL before proceeding with removal study. The removal study of Pb(II) ions from an aqueous solution was carried out using Si-TS-SSIL as an extractant, whereby the amount of Pb(II) ions removed was determined by AAS. In this removal study, the experiments were carried out at a fixed agitation speed (400 rpm) and fixed amount of Si-TS-SSIL (0.25 g), with different contact times ranging from 2 to 250 min at room temperature. The maximum removal capacity was found to be 8.37 mg/g. The kinetics study was well fitted with the pseudo-second order model. Meanwhile, for the isotherm study, the removal process of Pb(II) ions was well described by the Freundlich isotherm model, as this model exhibited a higher correlation coefficient (R2), i.e., 0.99, as compared to the Langmuir isotherm model.
Collapse
Affiliation(s)
- Nur Anis Liyana Kamaruddin
- Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Correspondence: ; Tel.: +60-1129019793
| | - Mohd Faisal Taha
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Cecilia Devi Wilfred
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| |
Collapse
|
6
|
Jiang W, Hu Y, Zhu Z. Biosorption Characteristic and Cytoprotective Effect of Pb 2+, Cu 2+ and Cd 2+ by a Novel Polysaccharide from Zingiber strioatum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228036. [PMID: 36432135 PMCID: PMC9696034 DOI: 10.3390/molecules27228036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
The pollution of heavy metal ions can cause damage to the human body through food, so developing a new biocompatible material that can remove the damage of heavy metal ions has a good application prospect. In this study, we obtained a new homogeneous polysaccharide composed of seven monosaccharides from Zingiber strioatum by using the method of separation and purification of polysaccharide. The results of adsorption behavior showed that the concentration, temperature and pH value could affect the adsorption effect of Zingiber strioatum polysaccharide (ZSP). Through model fitting of the data of adsorption time and metal concentration, the pseudo second-order kinetic model can well describe the kinetics of the adsorption process, and the adsorption isotherm data fit well with the Langmuir model. In the preliminary research results of adsorption mechanism, SEM showed the appearance of ZSP as flake and porous surface; EDX analysis confirmed the metal adsorption capacity of ZSP. Meanwhile, XPS and FT-IR further clarified the adsorption based on functional groups composed of C and O. The cells preprotected by ZSP can resist heavy metal ions. The above results show that ZSP can be used as a new macromolecule to bind heavy metal ions, which can broaden the research scope of polysaccharides in contaminated food systems.
Collapse
Affiliation(s)
- Wei Jiang
- Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Department of Health Management, Zunyi Medical and Pharmaceutical College, Zunyi 563006, China
| | - Ying Hu
- College of Public Health, Zunyi Medical University, Zunyi 563006, China
| | - Zhenyuan Zhu
- Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-22-60912390; Fax: +86-22-60601437
| |
Collapse
|
7
|
Ume OL, Ekeoma BC, Yusuf M, Al-Kahtani AA, Ubaidullah M, Sillanpää M. Batch studies of hexavalent chromium biosorption from mining wastewater using Aspergillus niger. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
8
|
Kasraei R, Malakootian M, Mohamadi M. Synthesis of Fe3O4 nanoparticles @Trioctylmethylammonium thiosalicylat (TOMATS) as a new magnetic nanoadsorbent for adsorption of ciprofloxacin in aqueous solution. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
The aim of this research was to investigate ciprofloxacin (CIP) removal efficiency from aqueous solutions by using Fe3O4 nanoparticles @Trioctylmethylammonium thiosalicylat Ionic liquid (Fe3O4 NP@ TOMATS IL) as a new magnetic nanoadsorbent. The adsorbent was characterized by field emission scanning electron microscope-energy dispersive spectroscopy (FESEM-EDS), mapping, Fourier transform infrared spectroscopy (FT-IR), the Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD). The effects of solution pH, adsorbent dose, contact time, initial CIP concentration, and temperature on CIP removal were also investigated. In optimal conditions such as pH = 5.6, CIP concentration = 30 mg/L, adsorbent dose = 0.15 g, temperature = 30 °C, contact time = 90 min, the removal efficiency in synthetic and real wastewater were obtained 87 and 73%, respectively. Batch experiments were carried out to study the sorption Kinetics, thermodynamics, and equilibrium isotherms of CIP with magnetic nanoadsorbent. The results show that all of the above factors influence CIP removal. The Langmuir adsorption isotherm fits the adsorption process well, with the pseudo second-order model describing the adsorption kinetics accurately. The thermodynamic parameters indicate that adsorption is mainly physical adsorption. Recycling experiments revealed that the behavior of adsorbent is maintained after recycling for four times.
Collapse
Affiliation(s)
- Ruhollah Kasraei
- Environmental Health Engineering Research Center , Kerman University of Medical Sciences , Kerman, 7616913555 , Iran
- Department of Environmental Health , School of Public Health, Kerman University of Medical Sciences , Kerman, 7616913555 , Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center , Kerman University of Medical Sciences , Kerman, 7616913555 , Iran
- Department of Environmental Health , School of Public Health, Kerman University of Medical Sciences , Kerman, 7616913555 , Iran
| | - Maryam Mohamadi
- Pistachio Safety Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| |
Collapse
|
9
|
Elfeky AS, Youssef HF, Elzaref AS. Adsorption of Dye from Wastewater onto ZnO Nanoparticles-Loaded Zeolite: Kinetic, Thermodynamic and Isotherm Studies. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The adsorption process of methylene blue (MB) and its removal from aqueous solution at initial pollutant concentration range of 1–7 ppm was investigated. Zeolite-A (Z) and its ZnO-loaded species (Z/ZnO) were prepared via microwave technique from natural resource and applied for dye removal. The loading of ZnO was governed by the cation exchange property of zeolite, followed by calcination. Experimentally, Z and Z/ZnO were tested using X-ray Diffraction (XRD), Fourier-Transform Infrared (FTIR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and N2 adsorption-desorption. The examined parameters such as concentration of dye, contact time, ZnO dose and solution pH were traversed. Three isothermal models were analyzed. Kinetic studies indicated that, the adsorption of MB matched with pseudo-second order model. The maximum removal efficiency at pH 3, increased from 67.8% for Z to 94.8% for Z/ZnO modified with 3% ZnO loads (Z/ZnO(3%)). Parameters such as ΔH, ΔS, ΔG, S* and Ea were thermodynamically calculated. Langmiur isotherm and pseudo-second order models were the best fitting for the obtained data. The results indicated that, the adsorption of MB dye is spontaneous and endothermic, the removal efficiency is favored by increasing the temperature. ZnO-zeolite has much higher adsorption capacity for eliminating MB dye than that of the un-loaded zeolite.
Collapse
Affiliation(s)
- Ahmed Samer Elfeky
- Chemistry Department, Faculty of Science , Al-Azhar University , Nasr City, P.B. 11884 , Cairo , Egypt
| | - Hanan Farouk Youssef
- Inorganic Chemical Industries and Mineral Resources Division , National Research Centre (NRC) , Giza , Egypt
| | - Ahmed Shafek Elzaref
- Chemistry Department, Faculty of Science , Al-Azhar University , Nasr City, P.B. 11884 , Cairo , Egypt , Tel.: +(002) 0100 87 53 656, e-mail:
| |
Collapse
|