1
|
Fatima S, Iqbal M, Bhatti HN, Alwadai N, Al Huwayz M, Nazir A, Iqbal M. Kinetics and thermodynamics studies of nickel manganite nanoparticle as photocatalyst and fuel additive. Heliyon 2024; 10:e33861. [PMID: 39071692 PMCID: PMC11276917 DOI: 10.1016/j.heliyon.2024.e33861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, nickel manganite (NiMn2O4) nanoparticles were prepared using a hydrothermal method and examined its potential as a photocatalyst for the Acid Green 25 (AG-25) dye degradation. The nanoparticles were subjected to structural analysis using X-ray diffraction (XRD) and morphological analysis using scanning electron microscopy (SEM). The study examined the kinetics and thermodynamics of degradation processes that are catalyzed by photocatalysis. To ascertain their effect on dye degradation, several parameters, such as catalyst dose, H2O2 concentration, and temperature, were investigated. With a temperature of 315 K in a pseudo-first-order kinetic reaction, a 0.3 M H2O2 concentration, 0.05 mg/mL catalyst dose, and a promising removal efficiency of 96 % was achieved by the NiMn2O4 NPs in 40 min. Thermodynamic analysis revealed the spontaneous and entropy-driven nature of catalytic degradation, progressing favorably at elevated temperatures. Additionally, the NiMn2O4 NPs were applied as a fuel additive to analyze its influence on combustion and the physical characteristics of the modified fuel. The modified fuel demonstrated exceptional catalytic efficiency, emphasizing the potential of the NiMn2O4 NPs as an effective additive.
Collapse
Affiliation(s)
- Shumaila Fatima
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Mahwish Iqbal
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Environmental Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Norah Alwadai
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Maryam Al Huwayz
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
2
|
Dey P, Osborne JW, Lincy KB. An insight on the plausible biological and non-biological detoxification of heavy metals in tannery waste: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 258:119451. [PMID: 38906443 DOI: 10.1016/j.envres.2024.119451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
A key challenge for the tannery industries is the volume of tannery waste water (TWW) generated during the processing of leather, releasing various forms of toxic heavy metals resulting in uncontrolled discharge of tannery waste (TW) into the environment leading to pollution. The pollutants in TW includes heavy metals such as chromium (Cr), cadmium (Cd), lead (Pb) etc, when discharged above the permissible limit causes ill effects on humans. Therefore, several researchers have reported the application of biological and non-biological methods for the removal of pollutants in TW. This review provides insights on the global scenario of tannery industries and the harmful effects of heavy metal generated by tannery industry on micro and macroorganisms of the various ecological niches. It also provides information on the process, advantages and disadvantages of non-biological methods such as electrochemical oxidation, advanced oxidation processes, photon assisted catalytic remediation, adsorption and membrane technology. The various biological methods emphasised includes strategies such as constructed wetland, vermitechnology, phytoremediation, bioaugmentation, quorum sensing and biofilm in the remediation of heavy metals from tannery wastewater (TWW) with special emphasize on chromium.
Collapse
Affiliation(s)
- Parry Dey
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez W Osborne
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL) Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Kirubhadharsini B Lincy
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Lebkiri I, Abbou B, Hsissou R, Safi Z, Sadiku M, Berisha A, El Amri A, Essaadaoui Y, Kadiri L, Lebkiri A, Rifi EH. Investigation of the anionic polyacrylamide as a potential adsorbent of crystal violet dye from aqueous solution: Equilibrium, kinetic, thermodynamic, DFT, MC and MD approaches. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Nazir A, Malik K, Mahmood Z, Latif S, Imran M, Iqbal M. Kinetic studies and conditions optimizations for the removal of direct red 80 dye from wastewater using cotton calyx and iron oxide composite. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
This study focusses on the adsorption efficiency of cotton pod (Gossypium arboreum) for biosorption of direct red (DR) 80 dye. The effect of dye concentration, pH, shaking time, adsorbent dose and temperature was considered to evaluate the adsorption efficiency of the cheapest raw material on the removal of dye. Various concentrations (10–50 ppm) were examined and maximum percentage removal of the adsorbent was obtained at pH 1 with adsorbent dose of 0.9 g and shaking time of 60 min. To enhance the adsorption efficiency of the adsorbent, the cotton calyx was treated with FeSO4.7H2O and investigated the removal of the raw adsorbent and the composite. It was examined that the removal efficiency of the composite is more than that of raw adsorbent. The composite was more efficient as dye removal reached up to 97%. FTIR of the composite shows an additional peak at 650 cm−1 for presence of Fe-O group and confirmation of composite formation. SEM micrograph showed that the particles in composite are more packed compared to the raw adsorbent. Mathematical models were applied and kinetic studies also have been done to provide better results regarding to the experimental data. It is concluded that the prepared adsorbent could be used as a tool for the removal of toxic pollutants from textile wastewater.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Kainat Malik
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Zaid Mahmood
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Shoomaila Latif
- School of Physical Sciences , University of the Punjab , Lahore , Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| |
Collapse
|
5
|
Gülen J, Küçük İ, Yalçın BS, Çelik SE, Özgür M. Ultrasonic supported dye removal by a novel biomass. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Sumac Leaves (Rhus Coriaria L), were used as a possible adsorbent of Basic Blue 3 (BB3) removal. The main affecting parameters on adsorption such as concentration, pH and temperature were investigated. Adsorption equilibrium was reached in 30 min. The ultrasonic effect was also enhanced the dyestuff removal. Adsorption capacity was rised from 0.566 to 1.826 mg/g, as rising the concentration from 4 μg/mL to 10 μg/mL. Several isotherm models including Langmuir, Freundlich and Temkin were applied for explaining the adsorption mechanism. Temkin and Langmuir isotherm models describe the system well. Pseudo first order, pseudo second order and intra particle kinetics were evaluated. Pseudo second order diffusion model supports the adsoprption and also intra particle diffusion plays an important role for BB3 removal. Thermodynamics of the adsorption were commented. −2219.5 J/mol of Gibbs energy showed us a spontaneous and physical adsorption.
Collapse
Affiliation(s)
- Jale Gülen
- Chemical Engineering Department , Yıldız Technical University , 34210 , Esenler – Istanbul , Türkiye
| | - İlknur Küçük
- Chemical Engineering Department , Yıldız Technical University , 34210 , Esenler – Istanbul , Türkiye
| | - Berrin Saygı Yalçın
- Chemical Engineering Department , Yalova University , 77100 , Yalova – Istanbul , Türkiye
| | - Selen Ezgi Çelik
- Chemical Engineering Department , Yıldız Technical University , 34210 , Esenler – Istanbul , Türkiye
| | - Mahmure Özgür
- Science&Literature Department , Yıldız Technical University , 34210 , Esenler – Istanbul , Türkiye
| |
Collapse
|
6
|
Manzoor Q, Shahab MR, Sajid A, Yaseen HM, Alqahtani FO, Malik QM, Nazir A, Arif K, Iqbal M. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Environmental pollution is the major issue of 21st century. The toxic industrial effluents are crucially damaging aquatic environment, in the form of heavy metals, dyes and acids. The heavy metals are toxic, carcinogenic, non-degradable and therefore must be removed to save natural environment and human health. Batch sorption efficiency of Momordica Charantia L. stem and root (MCS and MCR) was studied for Cr(VI) metal ions removal under controlled adsorption parameters. The adsorbed and residual concentration of Cr(VI) was determined by atomic absorption spectrophotometer (AAS). The adsorbent surface morphology was determined by FTIR, BET, SEM and elemental analysis by EDX. The Freundlich and Langmuir equilibrium isotherm and pseudo 1st and 2nd order kinetic models were studied to understand bio-sorption mechanism. The Freundlich isotherm and pseudo 2nd order kinetic was best fitted model for MCS and MCR bio-sorption process. The maximum Langmuir adsorption capacity (q
max) was 312.50 and 400 (mg/g) for MCS and MCR respectively. The trend of removal efficiency (%) and metal uptake (q
e) was in order as MCS > MCR. All data was statistically analyzed using mean values ± standard deviation (SD). In conclusion, MCS and MCR are suggested as excellent sorbents for the elimination of numerous contaminants from the wastewater.
Collapse
Affiliation(s)
- Qaisar Manzoor
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | | | - Arfaa Sajid
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | | | - Fatimah Othman Alqahtani
- Department of Chemistry , College of Science, King Faisal University , P.O. Box 380 , Al-Ahsa , 31982 , Saudi Arabia
| | | | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Khalid Arif
- Department of Mathematics and Statistics , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| |
Collapse
|
7
|
Removal of Cr(III) from Aqueous Solution Using Labeo rohita Chitosan-Based Composite. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5395720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study focusses on the synthesis of chitosan-cellulose composite membrane derived from Labeo rohita fish scales (FS) for the removal of Cr(III) from aqueous solution, while chromium is a serious threat to groundwater. Waste FS are valorized to chitosan by demineralization, deproteination, and deacetylation successively. Cellulose was extracted from sugarcane bagasse using acidic hydrolysis. Chitosan-based cellulose composite porous membrane was fabricated by evaporating solvent from polymer solution in petri dish. The impact of pH, contact time, and absorbent dosage on the removal of Cr(III) from an aqueous solution was investigated. Atomic absorption spectrophotometer was used to check the Cr(III). Results showed that chitosan comprising 85% degree of deacetylation was achieved by alkali treatment, while yield was 22%. FTIR analysis confirmed the chitosan and chitosan-cellulose-based composite membrane. Morphology studies showed that the cellulose was strongly staggered and due to the chitosan, the surface of cellulose became rougher, which is good to enhance the adsorption capacity. The maximum removal 57% of Cr(III) from aqueous solution was observed at pH 6 at 60 min and 50 mg dosage of adsorbent. The minimum removal (47%) of Cr (III) was found at pH 2. These results confer that Labeo rohita-based chitosan-cellulose composite membrane has great potential for the removal of metals from industrial effluents.
Collapse
|
8
|
Nazir A, Zahid S, Mahmood Z, Kanwal F, Latif S, Imran M, Hassan F, Iqbal M. Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study focusses on the synthesis of polyaniline (PANI) and polyaniline base adsorbent utilizing Citrus limon leaves (CL) powder. The polyaniline base adsorbent with C. limon was synthesized using the same process as polyaniline synthesis, but with the addition of leaves powder. PANI and PANI based adsorbent with C. limon leaves powder (PANI/CL) were characterized by Fourier Transform Infra-Red (FTIR), UV-Visible spectroscopy and Scanning Electron Microscopy (SEM). This synthesized material was employed for the removal of congo red (CR) dye from industrial wastewater. Furthermore, the Langmuir, Temkin and Freundlich isotherms were also applied to evaluate experimental results. PANI is an efficient adsorbent for CR removal with 71.9 mg/g, while PANI/CL is an efficient adsorbent with 80 mg/g removal of dye according to a comparison of maximal adsorption capabilities. The data concludes that the prepared adsorbents could possibly be employed for the removal of toxic dyes from industrial effluents at large scale and ultimately could help in improving the environment.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Sundas Zahid
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Zaid Mahmood
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Farah Kanwal
- School of Physical Sciences, University of the Punjab , Lahore , Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab , Lahore , Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Faiza Hassan
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
9
|
Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In view of eco-benign nature of green synthesis, in the present investigation, the CuO NPs are prepared using Citrullus lanatus seeds extract and photocatalytic degradation efficiency for Acid Blue 40 (AB-40) was evaluated. The CuO NPs were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), EDX (energy dispersive X-ray), and FT-IR (Fourier transform infrared) techniques. The synthesized CuO NPs was in face centered monoclinic crystalline form with particle size in 40–60 nm range. The photocatalytic degradation potential of CuO NPs was assessed for acid blue 40 (AB-40) dye degradation and catalyst dose, concentration of dye, radiation exposure time and pH are considered for dye removal. The CuO NPs exhibited auspicious efficiency, an 84.89% dye removal was attained at optimal conditions and dye degradation followed BMG (Behnajady–Modirshahla–Ghanbery) kinetics model. Results revealed CuO NPs synthesized using C. lanatus seeds extract is photoactive catalyst and green route can be employed for CuO NPs fabrication for photocatalytic applications.
Collapse
|
10
|
Perveen S, Nadeem R, Ali S, Jamil Y. Biochar caged zirconium ferrite nanocomposites for the adsorptive removal of Reactive Blue 19 dye in a batch and column reactors and conditions optimizaton. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R
2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C
t
/C
o
= 0.95) and breakthrough (C
t
/C
o
= 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.
Collapse
Affiliation(s)
- Shazia Perveen
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Raziya Nadeem
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Shaukat Ali
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Yasir Jamil
- Department of Physics , University of Agriculture Faisalabad , Faisalabad , Pakistan
| |
Collapse
|
11
|
Ata S, Amin S, Bibi I, Mohsin IU, Islam A, Mehmood A, Irshad S, Al-Fawzan FF, Alissa SA, Iqbal M. Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present work, halloysite nano-clay (HNTs) based hydrogel was fabricated and their efficiency for the removal of methylene blue dye was studied. The hydrogel films were prepared with varying amount of halloysite nano-clay via facile solution casting method. Effect of halloysite clay on adsorption performance of composite was investigated. The hydrophobic thermoplastic synthetic polymer, polylactic acid (PLA) was blended with hydrophilic polymer polyvinyl alcohol (PVA) and HNTs to synthesize hydrogels. Swelling behavior and antimicrobial efficiency was also evaluated. The halloysite incorporating films showed excellent antibacterial activity. Swelling capacity of hydrogel with increased halloysite content was reduced due to increased crosslinking among polymer chains. Halloysite incorporated hydrogel exhibited higher adsorption ability as compared to film comprising of only PVA and PLA and dye removal followed pseudo first order kinetics. Film with 0.03 g HNTs rapidly attained adsorption-desorption equilibria and removed the dye completely within 30 min. Results confirmed that synthesized film could be potentially used for the removal of cationic dye and fabricated hydrogel film have promising potential for wastewater treatment since a higher adsorption capacity was observed for halloysite nano-clay incorporated hydrogel.
Collapse
Affiliation(s)
- Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Sadaf Amin
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul- Mohsin
- Deparment of Chemistry , The University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Department of Polymer Engineering and Technology , University of the Punjab , Lahore , Pakistan
| | - Azra Mehmood
- Centre of Excellence in Molecular Biology , University of the Punjab , Lahore , Pakistan
| | - Saba Irshad
- Institute of Biochemistry and Biotechnology , University of the Punjab , Lahore , Pakistan
| | - Foziah F. Al-Fawzan
- Chemistry Department , College of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Siham A. Alissa
- Chemistry Department , College of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| |
Collapse
|
12
|
Ata S, Naz S, Bibi I, Mohsin IU, Islam A, Mehmood A, Al-Fawzan FF, Alissa SA, Iqbal M. Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present investigation, photosensitized nanofibers (NFs) based on guar gum (GG)/poly(vinyl alcohol) (PVA)/Mg4Si6O15(OH)2·6H2O (SP) (modified by 1, 4-diamminobutane [DAB]) was fabricated by electrospinning approach and same was used for the degradation of dye under solar light irradiation. For electrospinning of NFs, the acceleration voltage, nozzle flow rate and collector distance levels of 19,000 KV, 0.5 mL/h and 3 cm were optimum conditions along with 7% (w/v) blend of GG/PVA (1.4:5.6 wt/wt) and 0.01 g modified Mg4Si6O15(OH)2·6H2O. The exfoliation, intercalation and clay organophilization in GG/PVA/Mg4Si6O15(OH)2·6H2O (GG/PVA/SP) NFs were examined by FTIR analysis. The photocatalytic activity (PCA) of NF was studied under the solar light irradiation for methylene blue (MB) dye degradation. The photosensitized GG/PVA/SP2 (G3) showed promising PCA under visible light and G3 furnished higher degradation of MB dye (99.1%) within 10 min of irradiation. Results revealed that GG/PVA/SP based NFs are highly active under solar light, which can be applied for the treatment of wastewater.
Collapse
Affiliation(s)
- Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Saba Naz
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul Mohsin
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Department of Polymer Engineering and Technology , University of the Punjab , Lahore , Pakistan
| | - Azra Mehmood
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Foziah F. Al-Fawzan
- Chemistry Department , College of Science, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Siham A. Alissa
- Chemistry Department , College of Science, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
13
|
Khalique A, Ali S, Khera RA, Asgher M. Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fabric dyed with disperse dyes followed a reduction clearing process (RCP)/chemical clearing process (CCP) to remove the unfixed dye from the fabric. In the clearing process, unfixed dyes and chemicals are discharged into streams. To combat this issue, an environment friendly approaches is explored that is a biological clearing using indigenous fungal strains of white-rot fungi (Pleurotus ostreatus and Ganoderma lucidum). In this context, fabrics dyed with three disperse dyes (Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL) were considered. The fabric cleared with biological clearing process improved the quality of fabric versus chemically cleared fabric and among the tested strains, G. lucidum showed higher efficiency for color strength improvement. However, no significant difference in tensile and tear strength of all fabric samples was observed. The quality of effluents in clearing reduction process for three dyes was assessed and it was observed that water quality parameters including chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), total suspended solids (TSS), pH, dissolved oxygen (DO) and total dissolved solids (TDS) improved significantly and results revealed that the biological clearing approach can substitute chemical reduction clearing process for fabric dyed with dyes, which is greener and eco-friendly versus conventional processes to avoid unfixed dyes discharge in to water bodies.
Collapse
Affiliation(s)
- Abdul Khalique
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Shaukat Ali
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | | | - Muhammad Asgher
- Department of Biochemistry , University of Agriculture , Faisalabad , Pakistan
| |
Collapse
|
14
|
Shaheen M, Bhatti IA, Ashar A, Mohsin M, Nisar J, Almoneef MM, Iqbal M. Synthesis of Cu-doped MgO and its enhanced photocatalytic activity for the solar-driven degradation of disperse red F3BS with condition optimization. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1741] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
In the present study, Cu (2–12%) doped MgO was synthesized and characterized by SEM, XRD, EDX, and FTIR spectroscopy. The Cu concentration significantly affected the band gap and particle size, which ranged from 4.63 to 3.78 eV and from 27.2 to 79 nm, respectively. In addition, the photocatalytic activity (PCA) of Cu-doped MgO was monitored by the photocatalytic destruction of disperse red F3BS coralene dye, and four reaction variables such as dye concentration, catalyst dose, hydrogen peroxide concentration, and irradiation time, respectively, were optimized by response surface methodology (RSM). Dye degradation was significantly affected by these process variables, and a degradation rate of up to 93% was achieved under optimized conditions. The wastewater samples were also treated under optimized conditions and water quality variables, i.e., chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were significantly improved after treatment. Cu-doped MgO exhibited excellent PCA under the solar-light exposure for the degradation of disperse red F3BS dye, which can be employed for the treatment of dye-containing effluents.
Collapse
Affiliation(s)
- Musarrat Shaheen
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Ijaz A. Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Ambreen Ashar
- Department of Chemistry , Government College Women University , Faisalabad 38040 , Pakistan
| | - Muhammad Mohsin
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Jan Nisar
- National Center of Excellence in Physical Chemistry, University of Peshawar , Peshawar 25120 , Pakistan
| | - Maha M. Almoneef
- Department of Physics , College of Sciences, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| |
Collapse
|
15
|
Ghafoor A, Bibi I, Ata S, Majid F, Kamal S, Rehman F, Iqbal S, Aamir M, Slimani Y, Iqbal M, Mailk A. Synthesis and characterization of magnetically separable La1−x
Bi
x
Cr1−y
Fe
y
O3 and photocatalytic activity evaluation under visible light. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A series of Bi and Fe doped La1−x
Bi
x
Cr1−y
Fe
y
O3 (x = 0.00–0.10 and y = 0.02–0.12) perovskites were fabricated through a facile microemulsion method and were characterized by XRD, DC electrical-resistivity, dielectric, VSM, and UV–Visible measurements. Orthorhombic phase of synthesized substituted chromite nanocrystallite was confirmed by powdered XRD analysis with crystallite size in 47.8–32.9 nm range. DC electrical resistivity was observed to increase from 1.70–39.99 × 108 Ω-cm. Dielectric parameters analyzed in frequency range of 20 kHz–20 MHz were decreased, while magnetic parameters were observed to increase with the increase in dopant (Bi+3 and Fe+3) concentration. Whereas coercivity values was low (narrow hysteresis loop), which indicate the soft ferromagnetic of the prepared material materials which are quite useful to employ in storage devices and electronics. Moreover, La1−x
Bi
x
Cr1−y
Fe
y
O3 degraded 90.80% Rhodamine B dye under visible light irradiation within 55 min. The increase in electrical resistivity, while decrease in dielectric parameters was also observed with increase in dopant concentration, ferromagnetic nature and excellent photocatalytic properties make this material suitable for high frequency energy devices, microwave appliances as well as an excellent magnetically separable photocatalyst for the purification of contaminated wastewater.
Collapse
Affiliation(s)
- Aamir Ghafoor
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ismat Bibi
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Sadia Ata
- Institute of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Farzana Majid
- Department of Physics , University of the Punjab , Lahore , Pakistan
| | - Shagufta Kamal
- Department of Applied Chemistry & Biochemistry , GC University , Faisalabad , Pakistan
| | - Fariha Rehman
- Department of Economics , COMSATS University Islamabad, Lahore Campus , Lahore , Pakistan
| | - Shahid Iqbal
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Muhammad Aamir
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC) , Imam Abdulrahman Bin Faisal University , P.O. Box 1982 , Dammam 31441 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Abdul Mailk
- National Institute of Lasers and Optronics (NILOP) , Islamabad , Pakistan
| |
Collapse
|
16
|
Ata S, Shaheen I, Majid F, Bibi I, Ijaz-ul-Mohsin, Jilani K, Slimani Y, Iqbal M. Hydrothermal route for the synthesis of manganese ferrite nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-19-1381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Manganese ferrite (MnFe2O4) was prepared via hydrothermal route and characterized by advanced techniques. The photocatalytic activity (PCA) was evaluated by degrading methylene blue (MB) dye under UV irradiation. The effect of process variables such as catalyst dose, UV exposure time and pH was studied for maximum degradation of dye at optimum conditions. The MnFe2O4 showed face centered cubic structure and average particle size of 23.98 nm. The lattice constant, lattice strain, ionic radii (rA & rB), bonding angles and hoping lengths of MnFe2O4 were recorded to be 0.8467 nm, 0.08, 1.66, 0.766, 1.833 and 2.116 Å, respectively. The MnFe2O4 showed promising PCA and at optimum conditions of process variable, up to 99% MB dye degradation was achieved. The PCA was found dependent to catalyst dose, UV exposure time and pH. Results revealed that the hydrothermal rout is feasible route for the preparation of MnFe2O4 ferrite in nano size and the PCA revealed the potential application of MnFe2O4 ferrite to degrade dye in textile wastewater.
Collapse
Affiliation(s)
- Sadia Ata
- Institute of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Ifra Shaheen
- Institute of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Farzana Majid
- Deparment of Physics , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul-Mohsin
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Kashif Jilani
- Department of Biochemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Yassine Slimani
- Department of Biophysics , Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University , P.O. Box 1982 , 31441 , Dammam , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| |
Collapse
|