1
|
Zhang W, Wang L, Chen H, Guo L, Bai Y, Qian X. Synthesis of azelaic acid copolyester plasticizers and their application in PVC. RSC Adv 2024; 14:23662-23671. [PMID: 39077328 PMCID: PMC11284530 DOI: 10.1039/d4ra03174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
A series of 2-methyl-1,3-propanediol (MPO) modified azelaic acid and hexylene glycol copolyester (PHMAZ) plasticizers with varying contents were synthesized using a direct esterification melt polycondensation method, and their structures were characterized systematically. Analysis using infrared spectroscopy and nuclear magnetic resonance spectroscopy confirmed the synthesis of the designed copolyester structure. Gel permeation chromatography (GPC) tests indicated that the number average molecular weight of each copolyester sample ranged between 2000 and 3000. These copolyesters were used to plasticize polyvinyl chloride (PVC) resin, and the glass transition temperature of the plasticized PVC samples was tested using a differential scanning calorimeter (DSC). Further characterization of the plasticizing effects was conducted using an electronic universal testing machine. The research results showed that as the content of MPO increased, the plasticizing effect of the copolyester initially increased and then decreased. Specifically, the copolyester containing 45% MPO, PHMAZ-45, demonstrated the best plasticizing effect on PVC, with the glass transition temperature of the plasticized PVC system around -35 °C, elongation at break at 908.4%, and a plasticizing efficiency of 254.5%. Additionally, this new type of copolyester plasticizer uses bio-based raw materials, exhibits excellent plasticizing effects, and the preparation process is stable and controllable. It holds promising potential to replace traditional volatile and toxic phthalate esters, presenting significant industrial application value.
Collapse
Affiliation(s)
- Wanjing Zhang
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Liyan Wang
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Hong Chen
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Liying Guo
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Yaoyao Bai
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Xin Qian
- Liaoning Shengda Environmental Resource Group Co., Ltd Liaoyang 111003 P. R. China
| |
Collapse
|
2
|
Nasr N, Shafi M, Zhao T, Ali R, Ahmad I, Khan M, Deifalla A, Ragab AE, Zahid Ansari M. A two-fold SPR-SERS sensor utilizing gold nanoparticles and graphene thin membrane as a spacer in a 3D composite structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123331. [PMID: 37688887 DOI: 10.1016/j.saa.2023.123331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Localized surface plasmonic resonance (LSPR) biosensing using optical fibers has gained popularity due to its label-free approach and high sensitivity to changes in the nanoparticle surface's local index of refraction. However, improving sensitivity remains a challenge. In this study, a two-step approach was employed to fabricate a composite structure using gold nanoparticles and monolayer graphene (Gr-AuNPs). The combination of AuNPs and graphene membrane demonstrated high potential for Surface-enhanced Raman scattering (SERS) and surface plasmonic resonance (SPR) fiber sensors. The Gr-AuNPs sensor successfully detected R6G molecules with a low detection limit of 10-12 M, indicating promising SERS activity. Numerical simulations confirmed that the graphene generated densely hot spots in the nanogap region between plasmonic layers. It's interesting that the proposed SPR-SERS Sensor can detect both glucose and thiram. This demonstrates the sensors practicality and can help with a basic environmental need to find leftover pesticides in the soil. The combination of SPR-SERS dual-mode detection provides more options for detecting and verifying data, increasing the precision and repeatability of experiments.
Collapse
Affiliation(s)
- Nazia Nasr
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Shafi
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingkai Zhao
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Rawaid Ali
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093 Kunming, China
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Khan
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ahmed Deifalla
- Structural Engineering and Construction Management Department, Future University in Egypt, 11835, Egypt
| | - Adham E Ragab
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
3
|
Abbas G, Bhatti IA, Amjed N, Zeshan M, Ibrahim SM, Nazir A, Iqbal M. Microwave-assisted desulphurization of coal in alkaline medium and conditions optimization by response surface methodology. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Abstract
The coal is an imperative source of energy, which on combustion, it emits sulphur dioxide, which cause air pollution. In the present study, microwave mediated desulphurization of coal was investigated and input variables were optimized by response surface methodology (RSM). The proximate analysis and ultimate analysis report indicate the sample belongs to subbituminous having sulphur (6.96%), volatile matter (34.5%) and calorific value (5099 kcal/kg). Under microwave irradiation, up to 68% of sulphur was leached in alkaline medium. The particle size of coal, concentration of potassium hydroxide (KOH), microwave exposure time and power of microwave radiation were systematically optimized for maximum desulphurization of the coal. Under optimum conditions of the process variables, 63.06% desulphurization of coal was achieved. The optimum levels of process variables are as, particle size 500 µm, irradiation time 8.54 min, radiation power 720 W and concentration of KOH 15% (w/v). Findings revealed that the microwave-assisted desulphurization under alkaline condition furnished promising efficiency, which can be employed for the desulphurization of coal.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Nyla Amjed
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | - Muhammed Zeshan
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Sobhy M. Ibrahim
- Department of Biochemistry , College of Science, King Saud University , P.O. Box: 2455 , Riyadh 11451 , Saudi Arabia
| | - Arif Nazir
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , University of Lahore , Lahore , Pakistan
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
4
|
Fabrication of Hydroxy-Terminated Polybutadiene with Piezoelectric Property by Functionalized Branch Chain Modification. Molecules 2023; 28:molecules28041810. [PMID: 36838798 PMCID: PMC9965734 DOI: 10.3390/molecules28041810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Hydroxyl-terminated polybutadiene (HTPB)-based piezoelectric polymer (m-HTPB) is prepared for the first time by functionalized branch chain modification strategy. In the presence of HTPB with >98.8% cis-1,4 content, the C=C bond partly breaks down, and functionalized acetylferrocene groups are introduced to the cis-1,4 polybutadiene branch chain, retaining the high cis-1,4 content of HTPB. The whole process is conducted under mild conditions, without complicated manipulations. The microstructure and molecular weight of m-HTPB are characterized by Fourier-transform infrared (FTIR) spectra, 1H or 13C nuclear magnetic resonance spectrum (NMR), and gel permeation chromatography (GPC). The thermal properties of HTPB and m-HTPB are determined by differential scanning calorimetry (DSC). Electrochemical investigations reveal that m-HTPB exhibits higher conductance compared with HTPB. The m-HTPB flexible piezoelectric polymer is further used for in situ and real-time pressure monitoring. This simple and effective strategy provides a promising polymeric material for flexible piezoelectric sensors.
Collapse
|
5
|
Pervaiz S, Bibi I, Hussain Shah SW, Wahab ZU, Ilyas H, Khan A, Khan M, Zada A. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
The present study details the green synthesis of silver nanoparticles using clove oil as a reducing and stabilizing agent. Cationic, anionic, nonionic and zwitterionic surfactants were introduced to study the change in size, shape, and morphology of nanoparticles. The nanoparticles were characterized using different techniques. The nanoparticles had shown specific surface Plasmon resonance band with absorbance between 380 and 385 nm. The X-ray diffraction study revealed that the nanoparticles are composed of spherical cubic crystals with average size between 136 and 180 nm while Dynamic Laser scattering (DLS) studies revealed an effective diameter of 82 nm and polydispersity index of 0.005. Thermogravimetric analysis suggested that the particles are stable even at 600 °C. All the samples presented good antibacterial and antifungal efficacies against Staphylococcus aureus, Klebsiella pneumonia and Candida albicans and good catalytic activities for the degradation of fast green and Allura red dyes. Further, thin edible films of the nanoparticles were prepared using sodium alginate for food preservation. The films were coated on fruits and vegetables for extending their shelf life to cope with demand and supply gap.
Collapse
Affiliation(s)
- Seemab Pervaiz
- Department of Conservation Studies , Hazara University , Mansehra , Pakistan
- Department of Chemistry , Hazara University , Mansehra , Pakistan
- Department of Chemistry , Quaid e Azam University , Islamabad , Pakistan
| | - Iram Bibi
- Department of Chemistry , Hazara University , Mansehra , Pakistan
| | | | - Zain Ul Wahab
- Department of Conservation Studies , Hazara University , Mansehra , Pakistan
| | - Hafsa Ilyas
- Department of Chemistry , Quaid e Azam University , Islamabad , Pakistan
| | - Ahmad Khan
- Department of Oral and Maxillofacial Surgery Bacha Khan Medical College Mardan , Khyber Pakhtunkhwa , 23200 Pakistan
| | - Muhammad Khan
- School of Materials Science and Engineering , Northwestern Polytechnical University , Xian , 710072 , P. R. China
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University Mardan , Khyber Pakhtunkhwa , 23200 Pakistan
| |
Collapse
|
6
|
Ponomarev II, Skupov KM, Modestov AD, Lysova AA, Ponomarev II, Vtyurina ES. Cardo Polybenzimidazole (PBI-O-PhT) Based Membrane Reinforced with m-polybenzimidazole Electrospun Nanofiber Mat for HT-PEM Fuel Cell Applications. MEMBRANES 2022; 12:membranes12100956. [PMID: 36295715 PMCID: PMC9610054 DOI: 10.3390/membranes12100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 05/31/2023]
Abstract
The further development of high temperature polymer electrolyte membrane (HT-PEM) fuel cells largely depends on the improvement of all components of the membrane-electrode assembly (MEA), especially membranes and electrodes. To improve the membrane characteristics, the cardo-polybenzimidazole (PBI-O-PhT)-based polymer electrolyte complex doped with phosphoric acid is reinforced using an electrospun m-PBI mat. As a result, the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane is obtained with hydrogen crossover values (~0.2 mA cm-2 atm-1), one order of magnitude lower than the one of the initial PBI-O-PhT membrane (~3 mA cm-2 atm-1) during HT-PEM fuel cell operation with Celtec®P1000 electrodes at 180 °C. Just as importantly, the reinforced membrane resistance was very close to the original one (65-75 mΩ cm2 compared to ~60 mΩ cm2). A stress test that consisted of 20 start-stops, which included cooling to the room temperature and heating back to 180 °C, was applied to the MEAs with the reinforced membrane. More stable operation for the HT-PEM fuel cell was shown when the Celtec®P1000 cathode (based on carbon black) was replaced with the carbon nanofiber cathode (based on the pyrolyzed polyacrylonitrile electrospun nanofiber mat). The obtained data confirm the enhanced characteristics of the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane.
Collapse
Affiliation(s)
- Igor I. Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| | - Kirill M. Skupov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| | - Alexander D. Modestov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Av., 31, bld. 4., 119071 Moscow, Russia
| | - Anna A. Lysova
- Kurnakov Institute of General and Inorganic Chemistry, Leninsky Av., 31, 119071 Moscow, Russia
| | - Ivan I. Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| | - Elizaveta S. Vtyurina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| |
Collapse
|
7
|
Pan F, Khan M, Tiehu L, Javed E, Hussain A, Zada A, Alei D, Wahab Z. Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nanodiamonds (NDs), the allotropic carbon nanomaterials with nanosize, durable inert core, adjustable surface morphology, high thermal constancy, and super mechanical performances, possess the characteristics of promising reinforcement materials for various technological applications. However, ND particles hold a vigorous propensity to aggregate in liquid media, obstructing their implementation in mechanical and thermal sciences. This aggregation is caused by high surface to volume ratio. By reducing the surface energy and lowering cluster formation, the mechanical and thermal properties of NDs can be polished. Herein, we report on the covalent functionalization of NDs with amine moiety through ball milling method. Their dispersion was checked in ethanol and polymethyl methacrylate (PMMA polymer) against nonfunctionalized NDs. The dispersive behavior showed that ball mill functionalized NDs produced preferably stable aqueous dispersions in ethanol media. Furthermore, 0.1, 0.2, and 0.4 wt% ND/PMMA composites were synthesized, and their mechanical and thermal behaviors were studied in terms of hardness, compression, Young`s modulus, flexural strength, tensile strength, and thermogravimetric analysis (TGA). Results revealed that the composites containing 0.2 wt% functionalized ND loaded with PMMA matrix showed outstanding mechanical and thermal performances indicating that 0.2 wt% is the optimum amount for achieving excellent outcomes.
Collapse
Affiliation(s)
- Feng Pan
- School of Mechanical Engineering , Xijing University , Xi'an 710123 , China
| | - Muhammad Khan
- School of Materials Science and Engineering, Northwestern Polytechnical University , 710072 Xian , P. R. China
| | - Li Tiehu
- School of Materials Science and Engineering, Northwestern Polytechnical University , 710072 Xian , P. R. China
| | - Elisha Javed
- Department of Chemistry , University of Okara Renala Khurd , Okara 56300 , Punjab , Pakistan
| | - Amjad Hussain
- Department of Chemistry , University of Okara Renala Khurd , Okara 56300 , Punjab , Pakistan
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University Mardan , K.P.K 23200 , Pakistan
| | - Dang Alei
- School of Materials Science and Engineering, Northwestern Polytechnical University , 710072 Xian , P. R. China
| | - Zainul Wahab
- Department of Conservation Studies , Hazara University , Mansehra , 21120 K.P.K , Pakistan
| |
Collapse
|
8
|
Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two series, A and B, of PVC based nanocomposite polymer membranes (nCPMs) were prepared using PbO only and PbO/graphite mixture as a filler by solution casting method. Seven samples with varying compositions (5–35%) of filler particles were prepared for each series and were compared by thickness measurements, porosity, water uptake, swelling degree, ionic conductivity, ion exchange capacity (IEC), membrane potential and transport number. The maximum values for these characteristics were observed as 0.402 mm, 0.77, 141.3%, 0.11, 0.0033 Scm−1, 8.6 milli-eq.g−1, 0.19 V and 0.01391 for series-A composites whereas that of 0.367 mm, 0.83, 63.4%, 0.019, 0.00981 Scm−1, 5.21 milli-eq.g−1, 0.13 V and 0.0108 for series-B nCPMs respectively. The SEM images of membranes showed greater voids produced in the series-B compared to series-A composites. The maximum Ionic conductivity, IEC, membrane potential and transport number were observed for membrane with 25% PbO/graphite, 20% PbO and 35% PbO particles respectively.
Collapse
|
9
|
Zhao W, Chi H, Zhang S, Zhang X, Li T. One-Pot Synthesis of Cellulose/MXene/PVA Foam for Efficient Methylene Blue Removal. Molecules 2022; 27:molecules27134243. [PMID: 35807488 PMCID: PMC9268378 DOI: 10.3390/molecules27134243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Ti3C2Tx MXene has attracted considerable interest as a new emerging two-dimensional material for environmental remediation due to its high adsorption capacity. However, its use is greatly limited by its poor mechanical properties, low processability and recyclability, and the low dispersity of such powder materials. In this work, a porous adsorbent (C–CMP) containing cellulose nanocrystals (CNC), Ti3C2Tx MXene and polyvinyl alcohol (PVA) was prepared by a simple and environmentally-friendly foaming method. Glutaraldehyde was used as crosslinker to improve the mechanical properties and boost the adsorption efficiency of methylene blue (MB) molecules. Fourier transform infrared (FT–IR), elemental analysis (EDX) and thermogravimetric analysis (TGA) further confirmed that the preparation of the C–CMP foam and cross-linking reaction were successful. Scanning electron microscope (SEM) indicated that the macropores were distributed homogeneously. The adsorption experiment showed that maximum adsorption capacity of MB can reach 239.92 mg·g−1 which was much higher than anionic dye (methyl orange, 45.25 mg·g−1). The adsorption behavior fitted well with the Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. Based on FT–IR, EDX and X-ray photoelectron spectroscopy (XPS) analysis, the adsorption mechanism between C–CMP and MB molecules was attributed to electrostatic interaction.
Collapse
|
10
|
Raza J, Hamid A, Khan M, Hussain F, Tiehu L, Fazil P, Zada A, Wahab Z, Ali A. Spectroscopic characterization of biosynthesized lead oxide (PbO) nanoparticles and their applications in PVC/graphite-PbO nanocomposites. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Extract of Hibiscus rosa-sinensis plants was used for the green synthesis of PbO nanoparticles. The prepared nanoparticles were conformed with the help of SEM, X-ray diffraction, FTIR and UV-visible spectroscopy. The prepared PbO nanoparticles were dispersed in deionized water and mixed with graphite to get graphite-PbO (G-PbO) filler. Seven different nanocomposite membranes with variable compositions (5, 10, 15, 20, 25, 30 and 35%) of PVC/G-PbO were prepared in tetrahydrofuran (THF) solvent using solution casting method. Different physiochemical parameters of the nanocomposite membranes studied included morphology, porosity, density, water uptake, swelling degree, electrical conductivity and proton adsorption capacity. All these physiochemical parameters were compared with pure PVC membranes available in literature. It was found that the addition of G-PbO filler in PVC polymer improved all the physiochemical properties except density. PVC/G-PbO membranes showed 42.65 times more electrical conductivity and 5.90 times more ion adsorption capacities compare to pure PVC membranes.
Collapse
Affiliation(s)
- Junaid Raza
- Department of Chemistry , University of Okara , Punjab , Pakistan
| | - Abdul Hamid
- Department of Chemistry , University of Okara , Punjab , Pakistan
| | - Muhammad Khan
- Department of Chemistry , University of Okara , Punjab , Pakistan
- School of Materials Science and Engineering , Northwestern Polytechnical University , Xian , 710072 , P.R. China
| | - Fakhar Hussain
- Department of Chemistry , University of Okara , Punjab , Pakistan
| | - Li Tiehu
- School of Materials Science and Engineering , Northwestern Polytechnical University , Xian , 710072 , P.R. China
| | - Perveen Fazil
- Department of Chemistry , University of Karachi , Karachi , 75270 , Pakistan
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University , Mardan , Khyber Pakhtunkhwa , 23200 , Pakistan
| | - Zainul Wahab
- Department of Conservation Studies , Hazara University , Mansehra , Khyber Pakhtunkhwa , 21120 , Pakistan
| | - Amjad Ali
- Department of Physics , University of Okara , Punjab , Pakistan
| |
Collapse
|
11
|
Nandi S, Ojha A, Nanda A, Sahoo RN, Swain R, Pattnaik KP, Mallick S. Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Vildagliptin (VID) is a dipeptidyl peptidase-4 (DPP-4) inhibitor used in controlling blood glucose level in type 2 diabetes. Vildagliptin improves beta cells function and is also suggested to effectively control the inflammation. The possible ocular anti-inflammatory property of vildagliptin has been explored using topically applied plasticized ocular film formulation. Film formulation was prepared by solvent cast and evaporation method using triethanolamine (TEA), dimethyl sulphoxide (DMSO), and polyethylene glycol 400 (PEG 400) as the plasticizer in HPMC hydrogel matrix base. Anti-inflammatory study was carried out in the carrageenan induced ocular rabbit model. Analytical methods confirmed that the drug was present almost in completely amorphized form in the film formulation. Level of hydration, swelling and erosion rate of the film played the controlling factor in the process of drug release, ocular residence and permeation. Maximum swelling rate of 363 h−1 has been shown by VHT compared to other formulation of VHD and VHP (174 and 242 h−1 respectively). Film containing DMSO exhibited highest in vitro release as well as ex vivo ocular permeation. Film formulation has shown a fast recovery of ocular inflammation in contrast to the untreated eye after inducing inflammation. Plasticized vildagliptin hydrogel film formulation could be utilized in the management and control of ocular inflammation particularly with diabetic retinopathy after proper clinical studies in higher animal and human individuals.
Collapse
Affiliation(s)
- Souvik Nandi
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Abinash Ojha
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Ashirbad Nanda
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
- School of Pharmacy and Life Sciences , Centurion University of Technology and Management , Odisha , India
| | - Rakesh Swain
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Krushna Prasad Pattnaik
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Subrata Mallick
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| |
Collapse
|
12
|
Ahmed S, Arshad T, Zada A, Afzal A, Khan M, Hussain A, Hassan M, Ali M, Xu S. Preparation and Characterization of a Novel Sulfonated Titanium Oxide Incorporated Chitosan Nanocomposite Membranes for Fuel Cell Application. MEMBRANES 2021; 11:membranes11060450. [PMID: 34204185 PMCID: PMC8246320 DOI: 10.3390/membranes11060450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
In this study, nano-TiO2 sulfonated with 1,3-propane sultone (STiO2) was incorporated into the chitosan (CS) matrix for the preparation of CS/STiO2 nanocomposite membranes for fuel cell applications. The grafting of sulfonic acid (–SO3H) groups was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The physicochemical properties of these prepared membranes, such as water uptake, swelling ratio, thermal and mechanical stability, ion exchange capacity and proton conductivity, were determined. The proton conducting groups on the surface of nano-TiO2 can form continuous proton conducting pathways along the CS/STiO2 interface and thus improve the proton conductivity of CS/STiO2 nanocomposite membranes. The CS/STiO2 nanocomposite membrane with 5 wt% of sulfonated TiO2 showed a proton conductivity (0.035 S·cm−1) equal to that of commercial Nafion 117 membrane (0.033 S·cm−1). The thermal and mechanical stability of the nanocomposite membranes were improved because the interfacial interaction between the -SO3H group of TiO2 and the –NH2 group of CS can restrict the mobility of CS chains to enhance the thermal and mechanical stability of the nanocomposite membranes. These CS/STiO2 nanocomposite membranes have promising applications in proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Saad Ahmed
- School of Materials, East China University of Science and Technology, Shanghai 200237, China; (S.A.); (M.A.)
- School of Chemical Engineering, Qinghai University, Xining 810016, China
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (T.A.); (A.A.); (M.K.); (A.H.); (M.H.)
| | - Tasleem Arshad
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (T.A.); (A.A.); (M.K.); (A.H.); (M.H.)
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Annum Afzal
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (T.A.); (A.A.); (M.K.); (A.H.); (M.H.)
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (T.A.); (A.A.); (M.K.); (A.H.); (M.H.)
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (T.A.); (A.A.); (M.K.); (A.H.); (M.H.)
| | - Muhammad Hassan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (T.A.); (A.A.); (M.K.); (A.H.); (M.H.)
| | - Muhammad Ali
- School of Materials, East China University of Science and Technology, Shanghai 200237, China; (S.A.); (M.A.)
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Shiai Xu
- School of Materials, East China University of Science and Technology, Shanghai 200237, China; (S.A.); (M.A.)
- School of Chemical Engineering, Qinghai University, Xining 810016, China
- Correspondence:
| |
Collapse
|
13
|
Zada A, Khan M, Hussain Z, Shah MIA, Ateeq M, Ullah M, Ali N, Shaheen S, Yasmeen H, Ali Shah SN, Dang A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
The alarming energy crises has forced the scientific community to work for sustainable energy modules to meet energy requirements. As for this, ZnO/g-C3N4 nanocomposites with proper heterojunction were fabricated by coupling a proper amount of ZnO with 2D graphitic carbon nitride (g-C3N4) nanosheets and the obtained nanocomposites were applied for photocatalytic hydrogen generation from water under visible light illumination (λ > 420 nm). The morphologies and the hydrogen generation performance of fabricated photocatalysts were characterized in detail. Results showed that the optimized 5ZnO/g-C3N4 nanocomposite produced 70 µmol hydrogen gas in 1 h compare to 8 µmol by pure g-C3N4 under identical illumination conditions in the presence of methanol without the addition of cocatalyst. The much improved photoactivities of the nanocomposites were attributed to the enhanced charge separation through the heterojunction as confirmed from photoluminescence study, capacity of the fabricated samples for •OH radical generation and steady state surface photovoltage spectroscopic (SS-SPS) measurements. We believe that this work would help to fabricate low cost and effective visible light driven photocatalyst for energy production.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| | - Zahid Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | | | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Mohib Ullah
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| | - Shabana Shaheen
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Humaira Yasmeen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University , Harbin 150040 , China
| | - Syed Niaz Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Alei Dang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| |
Collapse
|