Michaud DS, Thomson EM, van Oosterhout P, McNamee JP. Hair cortisol as a viable tool for the assessment of an association between environmental noise exposure and chronic stress.
THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022;
152:866. [PMID:
36050175 DOI:
10.1121/10.0012887]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Entrenched in the well-established link between stress and health, noise exposure as a potential contributor to stress-related health effects receives tremendous attention. Indeed, exposure to noise can act as a stressor as evidenced through increased heart rate, blood pressure, adrenaline, epinephrine, and cortisol. Cortisol is secreted from the adrenal glands in response to stressor-induced activation of the hypothalamic-pituitary-adrenal axis. For assessment of environmental noise and stress, repeated sampling in blood, saliva, or urine is necessary to evaluate the association between environmental noise exposure and protracted changes in cortisol. Controlling for the many variables that influence the secretion of cortisol at discrete sampling intervals is challenging. Studies suggest that systemically produced cortisol integrates and remains in hair as it grows, providing a measure that integrates a cortisol response over a longer period, circumventing several limitations associated with multiple sampling. Robust evidence supports the integration of cortisol into hair, yet recent studies call into question the notion that cortisol is retained with growth. The current paper discusses the strengths and limitations of hair cortisol analysis with an emphasis on its utility as a measure of chronic stress in environmental noise studies.
Collapse