1
|
Santos CBR, Lobato CC, Ota SSB, Silva RC, Bittencourt RCVS, Freitas JJS, Ferreira EFB, Ferreira MB, Silva RC, De Lima AB, Campos JM, Borges RS, Bittencourt JAHM. Analgesic Activity of 5-Acetamido-2-Hydroxy Benzoic Acid Derivatives and an In-Vivo and In-Silico Analysis of Their Target Interactions. Pharmaceuticals (Basel) 2023; 16:1584. [PMID: 38004449 PMCID: PMC10674373 DOI: 10.3390/ph16111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The design, synthesis, and evaluation of novel non-steroidal anti-inflammatory drugs (NSAIDs) with better activity and lower side effects are big challenges today. In this work, two 5-acetamido-2-hydroxy benzoic acid derivatives were proposed, increasing the alkyl position (methyl) in an acetamide moiety, and synthesized, and their structural elucidation was performed using 1H NMR and 13C NMR. The changes in methyl in larger groups such as phenyl and benzyl aim to increase their selectivity over cyclooxygenase 2 (COX-2). These 5-acetamido-2-hydroxy benzoic acid derivatives were prepared using classic methods of acylation reactions with anhydride or acyl chloride. Pharmacokinetics and toxicological properties were predicted using computational tools, and their binding affinity (kcal/mol) with COX-2 receptors (Mus musculus and Homo sapiens) was analyzed using docking studies (PDB ID 4PH9, 5KIR, 1PXX and 5F1A). An in-silico study showed that 5-acetamido-2-hydroxy benzoic acid derivates have a better bioavailability and binding affinity with the COX-2 receptor, and in-vivo anti-nociceptive activity was investigated by means of a writhing test induced by acetic acid and a hot plate. PS3, at doses of 20 and 50 mg/kg, reduced painful activity by 74% and 75%, respectively, when compared to the control group (20 mg/kg). Regarding the anti-nociceptive activity, the benzyl showed reductions in painful activity when compared to acetaminophen and 5-acetamido-2-hydroxy benzoic acid. However, the proposed derivatives are potentially more active than 5-acetamido-2-hydroxy benzoic acid and they support the design of novel and safer derivative candidates. Consequently, more studies need to be conducted to evaluate the different pharmacological actions, the toxicity of possible metabolites that can be generated, and their potential use in inflammation and pain therapy.
Collapse
Affiliation(s)
- Cleydson B. R. Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Cleison C. Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Sirlene S. B. Ota
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Rai C. Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Renata C. V. S. Bittencourt
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
| | - Jofre J. S. Freitas
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Elenilze F. B. Ferreira
- Laboratory of Organic Chemistry and Biochemistry, University of the State of Amapá, Macapá 68900-070, AP, Brazil;
| | - Marília B. Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Renata C. Silva
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Anderson B. De Lima
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Joaquín M. Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | - Rosivaldo S. Borges
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - José A. H. M. Bittencourt
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
| |
Collapse
|
2
|
Leão RP, Cruz JV, da Costa GV, Cruz JN, Ferreira EFB, Silva RC, de Lima LR, Borges RS, dos Santos GB, Santos CBR. Identification of New Rofecoxib-Based Cyclooxygenase-2 Inhibitors: A Bioinformatics Approach. Pharmaceuticals (Basel) 2020; 13:E209. [PMID: 32858871 PMCID: PMC7559105 DOI: 10.3390/ph13090209] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclooxygenase-2 receptor is a therapeutic target for planning potential drugs with anti-inflammatory activity. The selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib was selected as a pivot molecule to perform virtual ligand-based screening from six commercial databases. We performed the search for similarly shaped Rapid Overlay of Chemical Structures (ROCS) and electrostatic (EON) compounds. After, we used pharmacokinetic and toxicological parameters to determine the best potential compounds, obtained through the softwares QikProp and Derek, respectively. Then, the compounds proceeded to the molecular anchorage study, which showed promising results of binding affinity with the hCOX-2 receptor: LMQC72 (∆G = -11.0 kcal/mol), LMQC36 (∆G = -10.6 kcal/mol), and LMQC50 (∆G = -10.2 kcal/mol). LMQC72 and LMQC36 showed higher binding affinity compared to rofecoxib (∆G = -10.4 kcal/mol). Finally, molecular dynamics (MD) simulations were used to evaluate the interaction of the compounds with the target hCOX-2 during 150 ns. In all MD simulation trajectories, the ligands remained interacting with the protein until the end of the simulation. The compounds were also complexing with hCOX-2 favorably. The compounds obtained the following affinity energy values: rofecoxib: ΔGbind = -45.31 kcal/mol; LMQC72: ΔGbind = -38.58 kcal/mol; LMQC36: ΔGbind = -36.10 kcal/mol; and LMQC50: ΔGbind = -39.40 kcal/mol. The selected LMQC72, LMQC50, and LMQC36 structures showed satisfactory pharmacokinetic results related to absorption and distribution. The toxicological predictions of these compounds did not display alerts for possible toxic groups and lower risk of cardiotoxicity compared to rofecoxib. Therefore, future in vitro and in vivo studies are needed to confirm the anti-inflammatory potential of the compounds selected here with bioinformatics approaches based on rofecoxib ligand.
Collapse
Affiliation(s)
- Rozires P. Leão
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Josiane V. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Glauber V. da Costa
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Jorddy N. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Elenilze F. B. Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
- Laboratory of Organic Chemistry and Biochemistry, University of State of Amapá, Macapá 68900-070, AP, Brazil
| | - Raí C. Silva
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14090-901, SP, Brazil
| | - Lúcio R. de Lima
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Rosivaldo S. Borges
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
| | - Gabriela B. dos Santos
- Institute of Collective Health, Federal University of Western Pará, Santarém 68040-255, PA, Brazil;
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| |
Collapse
|
3
|
Bittencourt JAHM, Neto MFA, Lacerda PS, Bittencourt RCVS, Silva RC, Lobato CC, Silva LB, Leite FHA, Zuliani JP, Rosa JMC, Borges RS, Santos CBR. In Silico Evaluation of Ibuprofen and Two Benzoylpropionic Acid Derivatives with Potential Anti-Inflammatory Activity. Molecules 2019; 24:E1476. [PMID: 30991684 PMCID: PMC6515000 DOI: 10.3390/molecules24081476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a complex reaction involving cellular and molecular components and an unspecific response to a specific aggression. The use of scientific and technological innovations as a research tool combining multidisciplinary knowledge in informatics, biotechnology, chemistry and biology are essential for optimizing time and reducing costs in the drug design. Thus, the integration of these in silico techniques makes it possible to search for new anti-inflammatory drugs with better pharmacokinetic and toxicological profiles compared to commercially used drugs. This in silico study evaluated the anti-inflammatory potential of two benzoylpropionic acid derivatives (MBPA and DHBPA) using molecular docking and their thermodynamic profiles by molecular dynamics, in addition to predicting oral bioavailability, bioactivity and toxicity. In accordance to our predictions the derivatives proposed here had the potential capacity for COX-2 inhibition in the human and mice enzyme, due to containing similar interactions with the control compound (ibuprofen). Ibuprofen showed toxic predictions of hepatotoxicity (in human, mouse and rat; toxicophoric group 2-arylacetic or 3-arylpropionic acid) and irritation of the gastrointestinal tract (in human, mouse and rat; toxicophoric group alpha-substituted propionic acid or ester) confirming the literature data, as well as the efficiency of the DEREK 10.0.2 program. Moreover, the proposed compounds are predicted to have a good oral bioavailability profile and low toxicity (LD50 < 700 mg/kg) and safety when compared to the commercial compound. Therefore, future studies are necessary to confirm the anti-inflammatory potential of these compounds.
Collapse
Affiliation(s)
- José A H M Bittencourt
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Moysés F A Neto
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana-BA 44036-900, Brazil.
| | - Pedro S Lacerda
- Laboratory of Bioinformatics and Molecular Modeling, School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil.
| | - Renata C V S Bittencourt
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Rai C Silva
- Computational Laboratory of Pharmaceutical Chemistry, University of Sao Paulo, Av. Prof. do Café, s/n - Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil.
| | - Cleison C Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| | - Luciane B Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Franco H A Leite
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana-BA 44036-900, Brazil.
| | - Juliana P Zuliani
- Laboratory Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR-364, Porto Velho-RO 78912-000, Brazil.
| | - Joaquín M C Rosa
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs.GRANADA. University of Granada, 18071 Granada, Spain.
| | - Rosivaldo S Borges
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| | - Cleydson B R Santos
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| |
Collapse
|
4
|
Fernandes D, Assreuy J. Involvement of guanylate cyclase and potassium channels on the delayed phase of mouse carrageenan-induced paw oedema. Eur J Pharmacol 2005; 501:209-14. [PMID: 15464080 DOI: 10.1016/j.ejphar.2004.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/16/2004] [Accepted: 08/20/2004] [Indexed: 11/28/2022]
Abstract
Previous studies from this laboratory have shown that administration of nitric oxide (NO) donors reduces the early phase (which peaks at 4 h) of carrageenan-induced paw oedema. The aim of this study was to investigate the influence of NO donors on the delayed phase of the mouse paw oedema, which peaks 48 h after carrageenan injection. Treatment of animals with sodium nitroprusside (1.5, 5 and 10 micromol/kg, subcutaneously (s.c.)) 8 h after the subplantar carrageenan injection (300 microg/paw), reduced ( approximately 50%) the delayed phase of paw oedema and the delayed increase in plasma leakage, as assessed by Evans Blue extravasation. Two other NO donors, S-nitroso-N-acetyl-dl-penicillamine (SNAP) or glyceril trinitrate (both at 28 micromol/kg) yielded an inhibition in paw oedema similar to that of sodium nitroprusside. NO-induced inhibition of the delayed phase of paw oedema was reversed when animals were treated with 1H-[1,2,4]-oxadiazolo-[4,3-a]quinoxalin-1 (ODQ, a soluble guanylate cyclase inhibitor, 11 micromol/kg, s.c.) or with tetraethylammonium (TEA, a nonselective potassium channel blocker, 300 micromol/kg, s.c.), 30 min before the prophylactic dose of sodium nitroprusside. In conclusion, our results show that a brief exposure to NO donors, even when made several hours after the inflammatory reaction has been triggered, is still able to cause an important reduction on the delayed phase of carrageenan-induced mouse paw oedema and fluid leakage. Moreover, this long-lasting NO antiinflammatory effect appears to be dependent on guanylate cyclase and potassium channels.
Collapse
Affiliation(s)
- Daniel Fernandes
- Department of Pharmacology, Universidade Federal de Santa Catarina, University Campus, Trindade, Biological Sciences Centre, Block "D", Florianopolis-SC-88049-900-Brazil
| | | |
Collapse
|
5
|
Brendel J, Peukert S. Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.11.1589] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|