1
|
Tavares MT, de Almeida LC, Kronenberger T, Monteiro Ferreira G, Fujii de Divitiis T, Franco Zannini Junqueira Toledo M, Mariko Aymoto Hassimotto N, Agostinho Machado-Neto J, Veras Costa-Lotufo L, Parise-Filho R. Structure-activity relationship and mechanistic studies for a series of cinnamyl hydroxamate histone deacetylase inhibitors. Bioorg Med Chem 2021; 35:116085. [PMID: 33668008 DOI: 10.1016/j.bmc.2021.116085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis. In addition, structure-activity relationship (SAR) studies have been performed in order to verify the influence of the linker on the biological profile of the compounds. All tested compounds demonstrated significant antiproliferative effects against solid and hematological human tumor cell lines. Among them, 11b exhibited nanomolar potency against hematological tumor cells including Jurkat and Namalwa, with IC50 values of 40 and 200 nM, respectively. Cellular and molecular proliferation studies, in presence of compounds 11a-d, showed significant cell growth arrest, apoptosis induction, and up to 43-fold selective cytotoxicity for leukemia cells versus non-tumorigenic cells. Moreover, compounds 11a-d increased acetylated α-tubulin expression levels, which is phenotypically consistent with HDAC inhibition, and indirectly induced DNA damage. In vitro enzymatic assays performed for 11b revealed a potent HDAC6 inhibitory activity (IC50: 8.1 nM) and 402-fold selectivity over HDAC1. Regarding SAR analysis, the distance between the hydroxamate moiety and the aromatic ring as well as the presence of the double bond in the cinnamyl linker were the most relevant chemical feature for the antiproliferative activity of the series. Molecular modeling studies suggest that cinnamyl hydroxamate is the best moiety of the series for binding HDAC6 catalytic pocket whereas exploration of Ser568 by the urea connecting unity (CU) might be related with the selectivity observed for the cinnamyl derivatives. In summary, cinnamyl hydroxamate derived compounds with HDAC6 inhibitory activity exhibited cell growth arrest and increased apoptosis, as well as selectivity to acute lymphoblastic leukemia cells. This study explores interesting compounds to fight against neoplastic hematological cells.
Collapse
Affiliation(s)
- Maurício Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Glaucio Monteiro Ferreira
- Laboratory of Molecular Biology Applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thainá Fujii de Divitiis
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Neuza Mariko Aymoto Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Letícia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol 2020; 893:173837. [PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/24/2022]
Abstract
Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Kumboonma P, Senawong T, Saenglee S, Yenjai C, Phaosiri C. Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1785-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Hadianawala M, Datta B. Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators. RSC Adv 2016. [DOI: 10.1039/c5ra27341b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sulfonylurea derivatives are zinc metalloenzyme modulators.
Collapse
Affiliation(s)
- Murtuza Hadianawala
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- VGEC Complex Chandkheda
- Ahmedabad 382424
- India
| | - Bhaskar Datta
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- VGEC Complex Chandkheda
- Ahmedabad 382424
- India
| |
Collapse
|
5
|
Current trends in the development of histone deacetylase inhibitors: a review of recent patent applications. Pharm Pat Anal 2014; 1:75-90. [PMID: 24236715 DOI: 10.4155/ppa.11.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) have become an important target for the treatment of cancer and other diseases. Currently, more than ten HDAC inhibitors have entered clinical studies and two of them have already reached the market. The hydroxamic acid derivative SAHA (also known as vorinostat or Zolinza®) and the cyclic depsipeptide FK228 (romidepsin or Istodax®) have gained approval from the US FDA for the treatment of cutaneous T-cell lymphoma. Nevertheless, there has been a continuous effort aimed at discovering a new generation of clinical candidates with improved pharmaceutical properties. This review provides a summary of the most recent patents published from mid-2009 to mid-2011.
Collapse
|
6
|
Marks PA. Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:717-25. [PMID: 20594930 DOI: 10.1016/j.bbagrm.2010.05.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/28/2010] [Indexed: 01/29/2023]
Abstract
There are eleven zinc dependent histone deacetylases (HDAC) in humans which have histones and many non-histone substrates. The substrates of these enzymes include proteins that have a role in regulation of gene expression, cell proliferation, cell migration, cell death, immune pathways and angiogenesis. Inhibitors of HDACs (HDACi) have been developed which alter the structure and function of these proteins, causing molecular and cellular changes that induce transformed cell death. The HDACi are being developed as anti-cancer drugs and have therapeutic potential for many non-oncologic diseases.
Collapse
Affiliation(s)
- Paul A Marks
- Cell Biology and Genetics Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
7
|
Abstract
IMPORTANCE OF THE FIELD Following FDA approval of vorinostat in 2006, several novel HDAC inhibitors (HDACis) have entered clinical trials, and there are numerous published patent applications claiming novel HDACis which were optimized as potential drug candidates, designed for regional or systemic release, and created as dual or multifunctional inhibitors. Given the breadth and depth of recent reporting of novel HDACis, there has emerged a need to review the field from a chemist's perspective in one compact article. AREAS COVERED IN THIS REVIEW This review provides a summary of published patent applications claiming novel HDACis from 2007 until mid-2009, covering mainly classes I, II and IV anticancer HDACis including those that have recently advanced to the clinic. WHAT THE READER WILL GAIN Readers will rapidly gain an overview of the majority of HDACi scaffolds with representative structure-activity relationships; they will learn how these new compounds were created, how their drug like properties were improved and which companies are the main players in the field. TAKE HOME MESSAGE Although competition in this field is intense, the future application of HDACis to treat human disease either as single agents or in combination with existing drugs holds real promise.
Collapse
Affiliation(s)
- Haishan Wang
- Chemistry Discovery, S*BIO Pte Ltd, The Capricorn, Singapore Science Park II, Singapore, Singapore.
| | | |
Collapse
|
8
|
Histone deacetylase inhibitors: a novel class of anti-cancer agents on its way to the market. PROGRESS IN MEDICINAL CHEMISTRY 2008; 46:205-80. [PMID: 18381127 DOI: 10.1016/s0079-6468(07)00005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Itoh Y, Suzuki T, Kouketsu A, Suzuki N, Maeda S, Yoshida M, Nakagawa H, Miyata N. Design, Synthesis, Structure−Selectivity Relationship, and Effect on Human Cancer Cells of a Novel Series of Histone Deacetylase 6-Selective Inhibitors. J Med Chem 2007; 50:5425-38. [DOI: 10.1021/jm7009217] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Takayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Akiyasu Kouketsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Nobuaki Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Satoko Maeda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Minoru Yoshida
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan, Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan, and CREST Research Project, Japan Science and Technology Agency, Saitama 332-001, Japan
| |
Collapse
|
10
|
|
11
|
Riester D, Hildmann C, Schwienhorst A. Histone deacetylase inhibitors--turning epigenic mechanisms of gene regulation into tools of therapeutic intervention in malignant and other diseases. Appl Microbiol Biotechnol 2007; 75:499-514. [PMID: 17377788 DOI: 10.1007/s00253-007-0912-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 02/26/2007] [Accepted: 02/26/2007] [Indexed: 12/22/2022]
Abstract
Histone deacetylase inhibitors reside among the most promising targeted anticancer agents that are potent inducers of growth arrest, differentiation, and/or apoptotic cell death of transformed cells. In October 2006, the US Food and Drug Administration approved the first drug of this new class, vorinostat (1, Zolinza, Merck). Several histone deacetylase (HDAC) inhibitors more are in clinical trials. HDAC inhibitors have shown significant activity against a variety of hematological and solid tumors at doses that are well tolerated by patients, both in monotherapy as well as in combination therapy with other drugs. This paper reviews the most recent developments in HDAC inhibitor design, particularly in the context of anticancer therapy, and other possible pharmaceutical applications.
Collapse
Affiliation(s)
- Daniel Riester
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology und Genetics, Grisebachstr. 8, 37077, Göttingen, Germany
| | | | | |
Collapse
|
12
|
Price S, Bordogna W, Braganza R, Bull RJ, Dyke HJ, Gardan S, Gill M, Harris NV, Heald RA, van den Heuvel M, Lockey PM, Lloyd J, Molina AG, Roach AG, Roussel F, Sutton JM, White AB. Identification and optimisation of a series of substituted 5-pyridin-2-yl-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 2007; 17:363-9. [PMID: 17107790 DOI: 10.1016/j.bmcl.2006.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 02/06/2023]
Abstract
Further investigation of a series of thienyl-based hydroxamic acids that included ADS100380 and ADS102550 led to the identification of the 5-pyridin-2-yl-thiophene-2-hydroxamic acid 3c, which possessed modest HDAC inhibitory activity. Substitution at the 5- and 6-positions of the pyridyl ring of compound 3c provided compounds 5a-g, 7a, b, 9, and 13a. Compound 5b demonstrated improved potency, in vitro DMPK profile, and rat oral bioavailability, compared to ADS102550. Functionalisation of the pendent phenyl group of compounds 5b, 5e and 13a provided analogues that possessed excellent enzyme inhibition and anti-proliferative activity.
Collapse
Affiliation(s)
- Steve Price
- Argenta Discovery Ltd, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chapter 21 Recent Advances in the Medicinal Chemistry of Histone Deacetylase Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2007. [DOI: 10.1016/s0065-7743(07)42021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
14
|
Price S, Bordogna W, Bull RJ, Clark DE, Crackett PH, Dyke HJ, Gill M, Harris NV, Gorski J, Lloyd J, Lockey PM, Mullett J, Roach AG, Roussel F, White AB. Identification and optimisation of a series of substituted 5-(1H-pyrazol-3-yl)-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 2007; 17:370-5. [PMID: 17095213 DOI: 10.1016/j.bmcl.2006.10.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 10/24/2022]
Abstract
Optimisation of ADS100380, a sub-micromolar HDAC inhibitor identified using a virtual screening approach, led to a series of substituted 5-(1H-pyrazol-3-yl)-thiophene-2-hydroxamic acids (6a-i), that possessed significant HDAC inhibitory activity. Subsequent functionalisation of the pendent phenyl group of compounds 6f and 6g provided analogues 6j-w with further enhanced enzyme and anti-proliferative activity. Compound 6j demonstrated efficacy in a mouse xenograft experiment.
Collapse
Affiliation(s)
- Steve Price
- Argenta Discovery Ltd, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Suzuki T, Kouketsu A, Itoh Y, Hisakawa S, Maeda S, Yoshida M, Nakagawa H, Miyata N. Highly Potent and Selective Histone Deacetylase 6 Inhibitors Designed Based on a Small-Molecular Substrate. J Med Chem 2006; 49:4809-12. [PMID: 16884291 DOI: 10.1021/jm060554y] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To find novel histone deacetylase 6 (HDAC6)-selective inhibitors and clarify the structural requirements for HDAC6-selective inhibition, we prepared thiolate analogues designed based on the structure of an HDAC6-selective substrate and evaluated the histone/alpha-tubulin acetylation selectivity by Western blot analysis. Aliphatic compounds 17b-20b selectively caused alpha-tubulin acetylation over histone H4 acetylation. In enzyme assays using HDAC1, HDAC4, and HDAC6, compounds 17a-19a exhibited HDAC6-selective inhibition over HDAC1 and HDAC4.
Collapse
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya, Aichi 467-8603, Japan.
| | | | | | | | | | | | | | | |
Collapse
|