1
|
Gül D, Habtemichael N, Dietrich D, Dietrich J, Gößwein D, Khamis A, Deuss E, Künzel J, Schneider G, Strieth S, Stauber RH. Identification of cytokeratin24 as a tumor suppressor for the management of head and neck cancer. Biol Chem 2021; 403:869-890. [PMID: 34450690 DOI: 10.1515/hsz-2021-0287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
To improve management of head and neck squamous cell carcinoma patients, we need to increase our understanding of carcinogenesis, to identify biomarkers, and drug targets. This study aimed to identify novel biomarkers by providing transcriptomics profiles of matched primary tumors, lymph node metastasis, and non-malignant tissue of 20 HNSCC patients as well as by bioinformatic analyses of a TCGA HNSCC cohort, comprising 554 patients. We provide cancer cell signaling networks differentially expressed in tumors versus metastases, such as mesenchymal-epithelial transition, and structural integrity networks. As a proof of principle study, we exploited the data sets and performed functional analyses of a novel cytokeratin, cytokeratin24 (cKRT24), which had not been described as biomarker for tumors before. Survival analysis revealed that low cKRT24 expression correlated with poor overall survival in HNSCC. Experimentally, downregulation of cKRT24 in primary tumors, metastases, and HNSCC cell lines was verified on mRNA and protein level. Cloning and ectopic overexpression of cKRT24 not only affected viability and growth of HNSSC cell lines, but also inhibited tumor growth in murine xenograft studies. We conclude that cKRT24 functions as a tumor suppressor in HNSCC, and may serve as an additional prognostic biomarker and novel target to support current HNSCC treatments.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Dorothee Gößwein
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Aya Khamis
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany.,Department of Otorhinolaryngology Head and Neck Surgery, University Hospital, D-45147Essen, Germany
| | - Julian Künzel
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Günter Schneider
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Roland H Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| |
Collapse
|
2
|
Klimek L, Casper I, Wollenberg B, Stauber R, Koennecke M. [Histamine receptors in chronic inflammatory diseases of the nose and paranasal sinuses]. HNO 2019; 67:389-400. [PMID: 30944947 DOI: 10.1007/s00106-019-0649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Release of histamine from mast cells and basophils in inflammatory diseases of the nose and paranasal sinuses has been demonstrated in allergic and non-allergic processes. METHODS A selective literature search was conducted in PubMed and Medline, and publications in German-language journals were additionally analyzed. RESULTS The histamine receptors H1-H4 play a role in otorhinolaryngologic inflammatory diseases. To date, the histamine receptor subtype 4 (H4R), which is functionally expressed by immune cells in chronic inflammatory diseases, has received little attention. Stimulation of H4R influences the release of cytokines and chemokines as well as the migration behavior of immune cells. In animal models blockade of H4R reduced inflammation symptoms and pruritus. CONCLUSIONS H4R plays a key role in the pathogenesis of chronic inflammatory diseases and may represent an interesting future therapeutic target.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie Wiesbaden, An den Quellen 10, 65183, Wiesbaden, Deutschland.
| | - I Casper
- Zentrum für Rhinologie und Allergologie Wiesbaden, An den Quellen 10, 65183, Wiesbaden, Deutschland
| | - B Wollenberg
- HNO-Universitätsklinik Lübeck, Lübeck, Deutschland
| | - R Stauber
- HNO-Universitätsklinik Mainz, Mainz, Deutschland
| | - M Koennecke
- HNO-Universitätsklinik Lübeck, Lübeck, Deutschland
| |
Collapse
|
3
|
Lazarus KA, Wijayakumara D, Chand AL, Simpson ER, Clyne CD. Therapeutic potential of Liver Receptor Homolog-1 modulators. J Steroid Biochem Mol Biol 2012; 130:138-46. [PMID: 22266285 DOI: 10.1016/j.jsbmb.2011.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 11/14/2011] [Accepted: 12/27/2011] [Indexed: 12/18/2022]
Abstract
Liver Receptor Homolog-1 (LRH-1; NR5A2) belongs to the orphan nuclear receptor superfamily, and plays vital roles in early development, cholesterol homeostasis, steroidogenesis and certain diseases, including cancer. It is expressed in embryonic stem cells, adult liver, intestine, pancreas and ovary. It binds to DNA as a monomer and is regulated by various ligand-dependent and -independent mechanisms. Recent work identified synthetic ligands for LRH-1; such compounds may yield useful therapeutics for a range of pathologic conditions associated with aberrant expression and activity of LRH-1.
Collapse
|
4
|
Malekshah OM, Lage H, Bahrami AR, Afshari JT, Behravan J. PXR and NF-κB correlate with the inducing effects of IL-1β and TNF-α on ABCG2 expression in breast cancer cell lines. Eur J Pharm Sci 2012; 47:474-80. [PMID: 22750628 DOI: 10.1016/j.ejps.2012.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/17/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
Abstract
In this study we aimed to evaluate PXR and ABCG2 gene expression patterns and NF-κB activity induced by proinflammatory cytokines in different breast normal and carcinoma cells. The effects of proinflammatory cytokines on ABCG2 and PXR mRNA expression were studied using real-time PCR. Western blot analysis used for evaluating the protein levels of ABCG2, PXR and the active form of NF-κB (p65 in nuclear protein extract). Significant inductions in the ABCG2 and PXR mRNA and protein levels and NF-κB activity, were observed in MCF7, BT-474, CAL51, 184A1 and HBL100 cells, upon treatment with 50 ng/ml of IL-1β and TNF-α. On the contrary significant reduction of the ABCG2 and PXR mRNA and protein levels and NF-κB activity, were observed in MDA-MB-435 cell line. In conclusion, IL-1β and TNF-α induced ABCG2 and PXR expression and NF-κB activity in some breast cancer and normal cell lines. Similar patterns of induction and reduction in PXR and ABCG2 genes and NF-κB activity suggest a probable relationship between ABCG2, PXR and NF-κB.
Collapse
Affiliation(s)
- Obeid M Malekshah
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
5
|
Whitby RJ, Stec J, Blind RD, Dixon S, Leesnitzer LM, Orband-Miller LA, Williams SP, Willson TM, Xu R, Zuercher WJ, Cai F, Ingraham HA. Small molecule agonists of the orphan nuclear receptors steroidogenic factor-1 (SF-1, NR5A1) and liver receptor homologue-1 (LRH-1, NR5A2). J Med Chem 2011; 54:2266-81. [PMID: 21391689 DOI: 10.1021/jm1014296] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The crystal structure of LRH-1 ligand binding domain bound to our previously reported agonist 3-(E-oct-4-en-4-yl)-1-phenylamino-2-phenyl-cis-bicyclo[3.3.0]oct-2-ene 5 is described. Two new classes of agonists in which the bridgehead anilino group from our first series was replaced with an alkoxy or 1-ethenyl group were designed, synthesized, and tested for activity in a peptide recruitment assay. Both new classes gave very active compounds, particularly against SF-1. Structure-activity studies led to excellent dual-LRH-1/SF-1 agonists (e.g., RJW100) as well as compounds selective for LRH-1 (RJW101) and SF-1 (RJW102 and RJW103). The series based on 1-ethenyl substitution was acid stable, overcoming a significant drawback of our original bridgehead anilino-substituted series. Initial studies on the regulation of gene expression in human cell lines showed excellent, reproducible activity at endogenous target genes.
Collapse
Affiliation(s)
- Richard J Whitby
- School of Chemistry, University of Southampton, Southampton, Hants, SO17 1BJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brown AR, Bosies M, Cameron H, Clark J, Cowley A, Craighead M, Elmore MA, Firth A, Goodwin R, Goutcher S, Grant E, Grassie M, Grove SJ, Hamilton NM, Hampson H, Hillier A, Ho KK, Kiczun M, Kingsbury C, Kultgen SG, Littlewood PT, Lusher SJ, MacDonald S, McIntosh L, McIntyre T, Mistry A, Morphy JR, Nimz O, Ohlmeyer M, Pick J, Rankovic Z, Sherborne B, Smith A, Speake M, Spinks G, Thomson F, Watson L, Weston M. Discovery and optimisation of a selective non-steroidal glucocorticoid receptor antagonist. Bioorg Med Chem Lett 2011; 21:137-40. [DOI: 10.1016/j.bmcl.2010.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
7
|
Malekshah OM, Bahrami AR, Afshari JT, Mosaffa F, Behravan J. Correlation BetweenPXRandABCG2Patterns of mRNA Expression in a MCF7 Breast Carcinoma Cell Derivative upon Induction by Proinflammatory Cytokines. DNA Cell Biol 2011; 30:25-31. [DOI: 10.1089/dna.2010.1074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Obeid M. Malekshah
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Cell and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Biotechnology and Immunology Research Centers, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology and Immunology Research Centers, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Schweitzer A, Knauer SK, Stauber RH. Nuclear receptors in head and neck cancer: current knowledge and perspectives. Int J Cancer 2010; 126:801-9. [PMID: 19839054 DOI: 10.1002/ijc.24968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disease management of head and neck cancer has improved significantly. However, a high rate of early recurrences and metastasis still counteract improvement of long-term survival. Hence, the quest for molecular mechanisms and key regulatory factors exploitable by targeted therapies is still ongoing. Such potential candidates may include also nuclear receptors, belonging to a superfamily of transcription factors implicated in a broad spectrum of physiological and pathophysiological processes. As dysfunction of nuclear receptor signaling contributes to a variety of proliferative diseases, they are major targets for drug discovery and hold promising potential for the development of improved anticancer treatment strategies. Several nuclear receptors have also been associated with head and neck cancer, and strategies targeting these molecules are currently tested in clinical trials. However, reports and molecular knowledge on the pathobiological relevance of nuclear receptors for cancers of the head and neck is currently rather fragmented. Hence, this review provides a general overview of nuclear receptors' molecular functions and summarizes their potential prognostic and therapeutic relevance for this tumor entity.
Collapse
Affiliation(s)
- Andrea Schweitzer
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany
| | | | | |
Collapse
|
9
|
Knauer SK. Prognostic and therapeutic potential of nuclear receptors in head and neck squamous cell carcinomas. JOURNAL OF ONCOLOGY 2009; 2009:349205. [PMID: 19794826 PMCID: PMC2753797 DOI: 10.1155/2009/349205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/13/2009] [Indexed: 01/12/2023]
Abstract
Head and neck squamous cell carcinomas are among the most common neoplasms worldwide and characterized by local tumor aggressiveness, high rate of early recurrences, development of metastasis, and second primary cancers. Despite modern therapeutic strategies and sophisticated surgical management, overall survival-rates remained largely unchanged over the last decades. Thus, the need for novel treatment options for this tumor entity is undeniable. A key event in carcinogenesis is the uncontrolled modulation of genetic programs. Nuclear receptors belong to a large superfamily of transcription factors implicated in a broad spectrum of physiological and pathophysiological processes, including cancer. Several nuclear receptors have also been associated with head and neck cancer. This review will summarize their mode of action, prognostic/therapeutic relevance, as well as preclinical and clinical studies currently targeting nuclear receptors in this tumor entity.
Collapse
Affiliation(s)
- Shirley K. Knauer
- Department of Otorhinolaryngology, University of Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| |
Collapse
|
10
|
Translocation Biosensors - Cellular System Integrators to Dissect CRM1-Dependent Nuclear Export by Chemicogenomics. SENSORS 2009; 9:5423-45. [PMID: 22346706 PMCID: PMC3274152 DOI: 10.3390/s90705423] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/03/2009] [Accepted: 07/03/2009] [Indexed: 12/20/2022]
Abstract
Fluorescent protein biosensors are powerful cellular systems biology tools for dissecting the complexity of cellular processes with high spatial and temporal resolution. As regulated nucleo-cytoplasmic transport is crucial for the modulation of numerous (patho)physiological cellular responses, a detailed understanding of its molecular mechanism would open up novel options for a rational manipulation of the cell. In contrast to genetic approaches, we here established and employed high-content cellular translocation biosensors applicable for dissecting nuclear export by chemicogenomics. A431 cell lines, stably expressing a translocation biosensor composed of glutathione S-transferase, GFP and a rational combination of nuclear import and export signals, were engineered by antibiotic selection and flow cytometry sorting. Using an optimized nuclear translocation algorithm, the translocation response could be robustly quantified on the Cellomics Arrayscan® VTI platform. Subsequent to assay optimization, the assay was developed into a higher density 384-well format high-content assay and employed for the screening of the 17K ChemBioNet compound collection. This library was selected on the basis of a genetic algorithm used to identify maximum common chemical substructures in a database of annotated bioactive molecules and hence, is well-placed in the chemical space covered by bioactive compounds. Automated multiparameter data analysis combined with visual inspection allowed us to identify and to rationally discriminate true export inhibitors from false positives, which included fluorescent compounds or cytotoxic substances that dramatically affected the cellular morphology. A total of 120 potential hit compounds were selected for Cellomics Arrayscan® VTI based rescreening. The export inhibitory activity of 20 compounds effective at concentrations < 25 μM were confirmed by fluorescence microscopy in several cell lines. Interestingly, kinetic analysis allowed the identification of inhibitors capable to interfere with the export receptor CRM1-mediated nuclear export not only in an irreversible, but also in a reversible fashion. In sum, exploitation of biosensor based screening allows the identification of chemicogenomic tools applicable for dissecting nucleo-cytoplasmic transport in living cells.
Collapse
|