1
|
Connecting Ras and CTP synthase in Drosophila. Exp Cell Res 2022; 416:113155. [DOI: 10.1016/j.yexcr.2022.113155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022]
|
2
|
TSPAN6 is a suppressor of Ras-driven cancer. Oncogene 2022; 41:2095-2105. [PMID: 35184157 PMCID: PMC8975741 DOI: 10.1038/s41388-022-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
Oncogenic mutations in the small GTPase RAS contribute to ~30% of human cancers. In a Drosophila genetic screen, we identified novel and evolutionary conserved cancer genes that affect Ras-driven tumorigenesis and metastasis in Drosophila including confirmation of the tetraspanin Tsp29Fb. However, it was not known whether the mammalian Tsp29Fb orthologue, TSPAN6, has any role in RAS-driven human epithelial tumors. Here we show that TSPAN6 suppressed tumor growth and metastatic dissemination of human RAS activating mutant pancreatic cancer xenografts. Whole-body knockout as well as tumor cell autonomous inactivation using floxed alleles of Tspan6 in mice enhanced KrasG12D-driven lung tumor initiation and malignant progression. Mechanistically, TSPAN6 binds to the EGFR and blocks EGFR-induced RAS activation. Moreover, we show that inactivation of TSPAN6 induces an epithelial-to-mesenchymal transition and inhibits cell migration in vitro and in vivo. Finally, low TSPAN6 expression correlates with poor prognosis of patients with lung and pancreatic cancers with mesenchymal morphology. Our results uncover TSPAN6 as a novel tumor suppressor receptor that controls epithelial cell identify and restrains RAS-driven epithelial cancer.
Collapse
|
3
|
Tisi R, Spinelli M, Palmioli A, Airoldi C, Cazzaniga P, Besozzi D, Nobile MS, Mazzoleni E, Arnhold S, De Gioia L, Grandori R, Peri F, Vanoni M, Sacco E. The Multi-Level Mechanism of Action of a Pan-Ras Inhibitor Explains its Antiproliferative Activity on Cetuximab-Resistant Cancer Cells. Front Mol Biosci 2021; 8:625979. [PMID: 33681292 PMCID: PMC7925909 DOI: 10.3389/fmolb.2021.625979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
Ras oncoproteins play a crucial role in the onset, maintenance, and progression of the most common and deadly human cancers. Despite extensive research efforts, only a few mutant-specific Ras inhibitors have been reported. We show that cmp4–previously identified as a water-soluble Ras inhibitor– targets multiple steps in the activation and downstream signaling of different Ras mutants and isoforms. Binding of this pan-Ras inhibitor to an extended Switch II pocket on HRas and KRas proteins induces a conformational change that down-regulates intrinsic and GEF-mediated nucleotide dissociation and exchange and effector binding. A mathematical model of the Ras activation cycle predicts that the inhibitor severely reduces the proliferation of different Ras-driven cancer cells, effectively cooperating with Cetuximab to reduce proliferation even of Cetuximab-resistant cancer cell lines. Experimental data confirm the model prediction, indicating that the pan-Ras inhibitor is an appropriate candidate for medicinal chemistry efforts tailored at improving its currently unsatisfactory affinity.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Michela Spinelli
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Paolo Cazzaniga
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre - B4, Milano, Italy
| | - Daniela Besozzi
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre - B4, Milano, Italy
| | - Marco S Nobile
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre - B4, Milano, Italy.,Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Elisa Mazzoleni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Simone Arnhold
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| |
Collapse
|
4
|
Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives. Biomolecules 2020; 10:biom10111535. [PMID: 33182807 PMCID: PMC7698260 DOI: 10.3390/biom10111535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
RAS genes encode signaling proteins, which, in mammalian cells, act as molecular switches regulating critical cellular processes as proliferation, growth, differentiation, survival, motility, and metabolism in response to specific stimuli. Deregulation of Ras functions has a high impact on human health: gain-of-function point mutations in RAS genes are found in some developmental disorders and thirty percent of all human cancers, including the deadliest. For this reason, the pathogenic Ras variants represent important clinical targets against which to develop novel, effective, and possibly selective pharmacological inhibitors. Natural products represent a virtually unlimited resource of structurally different compounds from which one could draw on for this purpose, given the improvements in isolation and screening of active molecules from complex sources. After a summary of Ras proteins molecular and regulatory features and Ras-dependent pathways relevant for drug development, we point out the most promising inhibitory approaches, the known druggable sites of wild-type and oncogenic Ras mutants, and describe the known natural compounds capable of attenuating Ras signaling. Finally, we highlight critical issues and perspectives for the future selection of potential Ras inhibitors from natural sources.
Collapse
|
5
|
Gilardi M, Wang Z, Proietto M, Chillà A, Calleja-Valera JL, Goto Y, Vanoni M, Janes MR, Mikulski Z, Gualberto A, Molinolo AA, Ferrara N, Gutkind JS, Burrows F. Tipifarnib as a Precision Therapy for HRAS-Mutant Head and Neck Squamous Cell Carcinomas. Mol Cancer Ther 2020; 19:1784-1796. [PMID: 32727882 PMCID: PMC7484242 DOI: 10.1158/1535-7163.mct-19-0958] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/06/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022]
Abstract
Tipifarnib is a potent and highly selective inhibitor of farnesyltransferase (FTase). FTase catalyzes the posttranslational attachment of farnesyl groups to signaling proteins that are required for localization to cell membranes. Although all RAS isoforms are FTase substrates, only HRAS is exclusively dependent upon farnesylation, raising the possibility that HRAS-mutant tumors might be susceptible to tipifarnib-mediated inhibition of FTase. Here, we report the characterization of tipifarnib activity in a wide panel of HRAS-mutant and wild-type head and neck squamous cell carcinoma (HNSCC) xenograft models. Tipifarnib treatment displaced both mutant and wild-type HRAS from membranes but only inhibited proliferation, survival, and spheroid formation of HRAS-mutant cells. In vivo, tipifarnib treatment induced tumor stasis or regression in all six HRAS-mutant xenografts tested but displayed no activity in six HRAS wild-type patient-derived xenograft (PDX) models. Mechanistically, drug treatment resulted in the reduction of MAPK pathway signaling, inhibition of proliferation, induction of apoptosis, and robust abrogation of neovascularization, apparently via effects on both tumor cells and endothelial cells. Bioinformatics and quantitative image analysis further revealed that FTase inhibition induces progressive squamous cell differentiation in tipifarnib-treated HNSCC PDXs. These preclinical findings support that HRAS represents a druggable oncogene in HNSCC through FTase inhibition by tipifarnib, thereby identifying a precision therapeutic option for HNSCCs harboring HRAS mutations.
Collapse
Affiliation(s)
- Mara Gilardi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marco Proietto
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Anastasia Chillà
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Yusuke Goto
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marco Vanoni
- Dept of Biotechnology and Biosciences, and SYSBIO Centre of Systems Biology, University Milano-Bicocca, Milan, Italy
| | | | - Zbigniew Mikulski
- La Jolla Institute for Allergy and Immunology, Division of Inflammation Biology, La Jolla, CA
| | | | | | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA,Corresponding authors: To whom correspondence should be addressed at: J. Silvio Gutkind, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0803, USA; Phone: 858-534-5980; and to Francis Burrows, Kura Oncology, Inc., San Diego, California.
| | | |
Collapse
|
6
|
Wei CJ, Gu SC, Ren JY, Gu YH, Xu XW, Chou X, Lian X, Huang X, Li HZ, Gao YS, Gu B, Zan T, Wang ZC, Li QF. The impact of host immune cells on the development of neurofibromatosis type 1: The abnormal immune system provides an immune microenvironment for tumorigenesis. Neurooncol Adv 2020; 1:vdz037. [PMID: 32642666 PMCID: PMC7212924 DOI: 10.1093/noajnl/vdz037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThe immune system plays an essential role in the development of tumors, which has been demonstrated in multiple types of cancers. Consistent with this, immunotherapies with targets that disrupt these mechanisms and turn the immune system against developing cancers have been proven effective. In neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, the understanding of the complex interactions of the immune system is incomplete despite the discovery of the pivotal role of immune cells in the tumor microenvironment. Individuals with NF1 show a loss of the NF1 gene in nonneoplastic cells, including immune cells, and the aberrant immune system exhibits intriguing interactions with NF1. This review aims to provide an update on recent studies showing the bilateral influences of NF1 mutations on immune cells and how the abnormal immune system promotes the development of NF1 and NF1-related tumors. We then discuss the immune receptors major histocompatibility complex class I and II and the PD-L1 mechanism that shield NF1 from immunosurveillance and enable the immune escape of tumor tissues. Clarification of the latest understanding of the mechanisms underlying the effects of the abnormal immune system on promoting the development of NF1 will indicate potential future directions for further studies and new immunotherapies.
Collapse
Affiliation(s)
- Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Shu-Chen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang-Wen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Chou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hai-Zhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ya-Shan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Corresponding Authors: Zhichao Wang, MD, MPH and Qing-Feng Li, MD, PhD, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China (; )
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Corresponding Authors: Zhichao Wang, MD, MPH and Qing-Feng Li, MD, PhD, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China (; )
| |
Collapse
|
7
|
Abbott JR, Patel PA, Howes JE, Akan DT, Kennedy JP, Burns MC, Browning CF, Sun Q, Rossanese OW, Phan J, Waterson AG, Fesik SW. Discovery of Quinazolines That Activate SOS1-Mediated Nucleotide Exchange on RAS. ACS Med Chem Lett 2018; 9:941-946. [PMID: 30258545 DOI: 10.1021/acsmedchemlett.8b00296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Proteins in the RAS family are important regulators of cellular signaling and, when mutated, can drive cancer pathogenesis. Despite considerable effort over the last 30 years, RAS proteins have proven to be recalcitrant therapeutic targets. One approach for modulating RAS signaling is to target proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report hit-to-lead studies on quinazoline-containing compounds that bind to SOS1 and activate nucleotide exchange on RAS. Using structure-based design, we refined the substituents attached to the quinazoline nucleus and built in additional interactions not present in the initial HTS hit. Optimized compounds activate nucleotide exchange at single-digit micromolar concentrations in vitro. In HeLa cells, these quinazolines increase the levels of RAS-GTP and cause signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway.
Collapse
Affiliation(s)
- Jason R. Abbott
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Pratiq A. Patel
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jennifer E. Howes
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Denis T. Akan
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - J. Phillip Kennedy
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Michael C. Burns
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Carrie F. Browning
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Qi Sun
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Olivia W. Rossanese
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jason Phan
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Alex G. Waterson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - Stephen W. Fesik
- Department of Biochemistry and ‡Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
8
|
Maldonado LY, Arsene D, Mato JM, Lu SC. Methionine adenosyltransferases in cancers: Mechanisms of dysregulation and implications for therapy. Exp Biol Med (Maywood) 2017; 243:107-117. [PMID: 29141455 DOI: 10.1177/1535370217740860] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methionine adenosyltransferase genes encode enzymes responsible for the biosynthesis of S-adenosylmethionine, the principal biological methyl donor and precursor of polyamines and glutathione. Mammalian cells express three genes - MAT1A, MAT2A, and MAT2B - with distinct expression and functions. MAT1A is mainly expressed in the liver and maintains the differentiated states of both hepatocytes and bile duct epithelial cells. Conversely, MAT2A and MAT2B are widely distributed in non-parenchymal cells of the liver and extrahepatic tissues. Increasing evidence suggests that methionine adenosyltransferases play significant roles in the development of cancers. Liver cancers, namely hepatocellular carcinoma and cholangiocarcinoma, involve dysregulation of all three methionine adenosyltransferase genes. MAT1A reduction is associated with increased oxidative stress, progenitor cell expansion, genomic instability, and other mechanisms implicated in tumorigenesis. MAT2A/MAT2B induction confers growth and survival advantage to cancerous cells, enhancing tumor migration. Highlighted examples from colon, gastric, breast, pancreas and prostate cancer studies further underscore methionine adenosyltransferase genes' role beyond the liver in cancer development. In this subset of extra-hepatic cancers, MAT2A and MAT2B are induced via different regulatory mechanisms. Understanding the role of methionine adenosyltransferase genes in tumorigenesis helps identify attributes of these genes that may serve as valuable targets for therapy. While S-adenosylmethionine, and its metabolite, methylthioadenosine, have been largely explored as therapeutic interventions, targets aimed at regulation of MAT gene expression and methionine adenosyltransferase protein-protein interactions are now surfacing as potential effective strategies for treatment and chemoprevention of cancers. Impact statement This review examines the role of methionine adenosyltransferases (MATs) in human cancer development, with a particular focus on liver cancers in which all three MAT genes are implicated in tumorigenesis. An overview of MAT genes, isoenzymes and their regulation provide context for understanding consequences of dysregulation. Highlighting examples from liver, colon, gastric, breast, pancreas and prostate cancers underscore the importance of understanding MAT's tumorigenic role in identifying future targets for cancer therapy.
Collapse
Affiliation(s)
- Lauren Y Maldonado
- 1 Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Diana Arsene
- 2 Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - José M Mato
- 3 CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Derio, Bizkaia 48160, Spain
| | - Shelly C Lu
- 4 Division of Digestive and Liver Diseases, 22494 Cedars-Sinai Medical Center , Cedars-Sinai Medical Center, LA, CA 90048, USA
| |
Collapse
|
9
|
Palmioli A, Ciaramelli C, Tisi R, Spinelli M, De Sanctis G, Sacco E, Airoldi C. Natural Compounds in Cancer Prevention: Effects of Coffee Extracts and Their Main Polyphenolic Component, 5-O-Caffeoylquinic Acid, on Oncogenic Ras Proteins. Chem Asian J 2017; 12:2457-2466. [PMID: 28719146 DOI: 10.1002/asia.201700844] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Recent epidemiological studies have demonstrated that the consumption of healthy foods that are particularly rich in polyphenols might reduce the incidence of cancer and neurodegenerative diseases. In particular, chlorogenic acids (CGAs) occur ubiquitously in food and represent the most abundant polyphenols in the human diet. A number of beneficial biological effects of CGAs, such as anti-inflammatory activity, anti-carcinogenic activity, and protection against neurodegenerative diseases, have been reported. However, the molecular mechanisms at the base of these biological activities have not yet been investigated in depth. By combining NMR spectroscopy, molecular docking, surface plasmon resonance and ex vivo assays of the Ras-dependent breast cancer cell line MDA-MB-231, we contribute to the elucidation of the molecular basis of the activity of CGAs and natural extracts from green and roasted coffee beans as chemoprotective dietary supplements.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Renata Tisi
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.,NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Michela Spinelli
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Gaia De Sanctis
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.,SysBio Center of Systems Biology, Piazza della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.,NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.,SysBio Center of Systems Biology, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
10
|
Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species. Oncogene 2017; 36:5576-5592. [PMID: 28581519 PMCID: PMC5633656 DOI: 10.1038/onc.2017.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Activation of Ras signalling occurs in ~30% of human cancers; however, activated Ras alone is not sufficient for tumourigenesis. In a screen for tumour suppressors that cooperate with oncogenic Ras (RasV12) in Drosophila, we identified genes involved in the autophagy pathway. Bioinformatic analysis of human tumours revealed that several core autophagy genes, including GABARAP, correlate with oncogenic KRAS mutations and poor prognosis in human pancreatic cancer, supporting a potential tumour-suppressive effect of the pathway in Ras-driven human cancers. In Drosophila, we demonstrate that blocking autophagy at any step of the pathway enhances RasV12-driven epithelial tissue overgrowth via the accumulation of reactive oxygen species and activation of the Jun kinase stress response pathway. Blocking autophagy in RasV12 clones also results in non-cell-autonomous effects with autophagy, cell proliferation and caspase activation induced in adjacent wild-type cells. Our study has implications for understanding the interplay between perturbations in Ras signalling and autophagy in tumourigenesis, which might inform the development of novel therapeutics targeting Ras-driven cancers.
Collapse
|
11
|
De Sanctis G, Spinelli M, Vanoni M, Sacco E. K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts. PLoS One 2016; 11:e0163790. [PMID: 27685888 PMCID: PMC5042513 DOI: 10.1371/journal.pone.0163790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species. METHODOLOGY AND PRINCIPAL FINDINGS We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells-but not their parental NIH3T3-are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene-encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine-and decreased methionine uptake. CONCLUSIONS AND SIGNIFICANCE Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely-though not exclusively-due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for protein synthesis. Therapeutic regimens of cancer involving modulation of methionine metabolism could be more effective in cells with limited methionine transport capability.
Collapse
Affiliation(s)
- Gaia De Sanctis
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Michela Spinelli
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Vanoni
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elena Sacco
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- * E-mail:
| |
Collapse
|
12
|
Peng H, Li TWH, Yang H, Moyer MP, Mato JM, Lu SC. Methionine adenosyltransferase 2B-GIT1 complex serves as a scaffold to regulate Ras/Raf/MEK1/2 activity in human liver and colon cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1135-44. [PMID: 25794709 DOI: 10.1016/j.ajpath.2014.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2B (MAT2B) encodes for variant proteins V1 and V2 that interact with GIT1 to increase ERK activity and growth in human liver and colon cancer cells. MAT2B or GIT1 overexpression activates MEK. This study explores the mechanism for MEK activation. We examined protein-protein interactions by co-immunoprecipitation and verified by confocal microscopy and pull-down assay using recombinant or in vitro translated proteins. Results were confirmed in an orthotopic liver cancer model. We found that MAT2B and GIT1-mediated MEK1/2 activation was not mediated by PAK1 or Src in HepG2 or RKO cells. Instead, MAT2B and GIT1 interact with B-Raf and c-Raf and enhance recruitment of Raf proteins to MEK1/2. MAT2B-GIT1 activates c-Raf, which is the key mediator for MEK/12 activation, because this still occurred in RKO cells that express constitutively active B-Raf mutant. The mechanism lies with the ability of MAT2B-GIT1 to activate Ras and promote B-Raf/c-Raf heterodimerization. Interestingly, MAT2B but not GIT1 can directly interact with Ras, which increases protein stability. Finally, increased Ras-Raf-MEK signaling occurred in phenotypically more aggressive liver cancers overexpressing MAT2B variants and GIT1. In conclusion, interaction between MAT2B and GIT1 serves as a scaffold and facilitates signaling in multiple steps of the Ras/Raf/MEK/ERK pathway, further emphasizing the importance of MAT2B/GIT1 interaction in cancer growth.
Collapse
Affiliation(s)
- Hui Peng
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tony W H Li
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Heping Yang
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California; USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Jose M Mato
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Bizkaia, Spain
| | - Shelly C Lu
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California; USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
13
|
The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol Sin 2015; 36:291-7. [PMID: 25557115 DOI: 10.1038/aps.2014.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Activating RAS mutations are common in human tumors. These mutations are often markers for resistance to therapy and subsequent poor prognosis. So far, targeting the RAF-MEK-ERK and PI3K-AKT signaling pathways downstream of RAS is the only promising approach in the treatment of cancer patients harboring RAS mutations. RAL GTPase, another downstream effector of RAS, is also considered as a therapeutic option for the treatment of RAS-mutant cancers. The RAL GTPase family comprises RALA and RALB, which can have either divergent or similar functions in different tumor models. Recent studies on non-small cell lung cancer (NSCLC) have showed that different RAS mutations selectively activate specific effector pathways. This observation requires broader validation in other tumor tissue types, but if true, will provide a new approach to the treatment of RAS-mutant cancer patients by targeting specific downstream RAS effectors according to the type of RAS mutation. It also suggests that RAL GTPase inhibition will be an important treatment strategy for tumors harboring RAS glycine to cysteine (G12C) or glycien to valine (G12V) mutations, which are commonly found in NSCLC and pancreatic cancer.
Collapse
|
14
|
Kim SY, Choi EJ, Yun JA, Jung ES, Oh ST, Kim JG, Kang WK, Lee SH. Syndecan-1 expression is associated with tumor size and EGFR expression in colorectal carcinoma: a clinicopathological study of 230 cases. Int J Med Sci 2015; 12:92-9. [PMID: 25589885 PMCID: PMC4293174 DOI: 10.7150/ijms.10497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/07/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Syndecan-1 (SDC1) is reported to modulate several key processes of tumorigenesis and has variable expression in many cancers. To date, the cause of altered expression has not been elucidated. In this study, we compared SDC1 expression with various clinicopathological parameters and molecular markers to evaluate its clinical significance in colorectal carcinoma. METHODS We screened for SDC1 expression using immunohistochemistry in 230 surgical specimens of primary colorectal carcinoma from patients consecutively treated between 2008 and 2011 at Seoul St. Mary's Hospital, The Catholic University of Korea. The relationship between SDC1 expression and various clinicopathological parameters and molecular markers was analyzed. RESULTS The tumors were principally located in the left colon (71.3%) and rectum (33.5%). There were 216 (93.9%) adenocarcinomas, 10 (4.3%) mucinous adenocarcinomas, and 4 other tumors. Most of the carcinomas were pT3 (68.3%) and pT4 (22.2%). There was regional lymph node metastasis in 140 patients. SDC1 expression was identified in the cancer cells of 212 (96.8%) colon cancer cases. Of the SDC1-positive cases, 131 showed predominantly membranous immunopositivity, and 81 showed a predominantly cytoplasmic staining pattern. Mixed membranous and cytoplasmic staining was observed in 154 cases. In 93 cases, stromal SDC1 reactivity was noted. Epithelial SDC1 immunopositivity was significantly associated with tumor size (p=0.016) and epidermal growth factor receptor expression (p=0.006). However, it was not significantly correlated with lymph node metastasis, distant metastasis, lymphatic or vascular invasion, or KRAS mutation. In addition, stromal SDC1 immunopositivity was significantly associated with the male sex (p=0.018). CONCLUSIONS The expression profile of SDC1 may be of clinical value in colorectal cancer and may help in identifying aggressive forms of colorectal carcinoma. Further studies are needed in order to better understand the role of SDC1 in the progression and invasiveness of colorectal carcinoma.
Collapse
Affiliation(s)
- Su Young Kim
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Eun Ji Choi
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Jeong A Yun
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Eun Sun Jung
- 2. Department of Hospital Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Seung Taek Oh
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Jun Gi Kim
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Won Kyung Kang
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Sung Hak Lee
- 2. Department of Hospital Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| |
Collapse
|
15
|
Kang J, Pervaiz S. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol 2013; 2:206. [PMID: 23316476 PMCID: PMC3539672 DOI: 10.3389/fonc.2012.00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022] Open
Abstract
Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.
Collapse
Affiliation(s)
- Jia Kang
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine Singapore, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| | | |
Collapse
|