1
|
Naveed M, Li LD, Sheng G, Du ZW, Zhou YP, Nan S, Zhu MY, Zhang J, Zhou QG. Agomelatine: An astounding sui-generis antidepressant? Curr Mol Pharmacol 2021; 15:943-961. [PMID: 34886787 DOI: 10.2174/1874467214666211209142546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is one of the foremost causes of disability and premature death worldwide. Although the available antidepressants are effective and well tolerated, they also have many limitations. Therapeutic advances in developing a new drug's ultimate relation between MDD and chronobiology, which targets the circadian rhythm, have led to a renewed focus on psychiatric disorders. In order to provide a critical analysis about antidepressant properties of agomelatine, a detailed PubMed (Medline), Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, Google Scholar, and PsycInfo search was performed using the following keywords: melatonin analog, agomelatine, safety, efficacy, adverse effects, pharmacokinetics, pharmacodynamics, circadian rhythm, sleep disorders, neuroplasticity, MDD, bipolar disorder, anhedonia, anxiety, generalized anxiety disorder (GAD), and mood disorders. Agomelatine is a unique melatonin analog with antidepressant properties and a large therapeutic index that improves clinical safety. It is a melatonin receptor agonist (MT1 and MT2) and a 5-HT2C receptor antagonist. The effects on melatonin receptors enable the resynchronization of irregular circadian rhythms with beneficial effects on sleep architectures. In this way, agomelatine is accredited for its unique mode of action, which helps to exert antidepressant effects and resynchronize the sleep-wake cycle. To sum up, an agomelatine has not only antidepressant properties but also has anxiolytic effects.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Gang Sheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Sun Nan
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| |
Collapse
|
2
|
Noseda ACD, Rodrigues LS, Targa ADS, Ilkiw JL, Fagotti J, Dos Santos PD, Cecon E, Markus RP, Solimena M, Jockers R, Lima MMS. MT 2 melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson's disease. Eur J Pharmacol 2021; 891:173722. [PMID: 33159932 DOI: 10.1016/j.ejphar.2020.173722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/26/2022]
Abstract
Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 μg/μl), luzindole (LUZ, 5 μg/μl) or the MT2-selective receptor drug 4-P-PDOT (5 μg/μl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 μg/μl, 1 μg/μl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.
Collapse
Affiliation(s)
- Ana Carolina D Noseda
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lais S Rodrigues
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Adriano D S Targa
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Jessica L Ilkiw
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Juliane Fagotti
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Erika Cecon
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Marcelo M S Lima
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Shinde M, Bali N, Rathod S, Karemore M, Salve P. Effect of binary combinations of solvent systems on permeability profiling of pure agomelatine across rat skin: a comparative study with statistically optimized polymeric nanoparticles. Drug Dev Ind Pharm 2020; 46:826-845. [DOI: 10.1080/03639045.2020.1757697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mahesh Shinde
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Nikhil Bali
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Shahadev Rathod
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Megha Karemore
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Pramod Salve
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
4
|
Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A. GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells 2020; 9:cells9030727. [PMID: 32188010 PMCID: PMC7140610 DOI: 10.3390/cells9030727] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β), originally described as a negative regulator of glycogen synthesis, is a molecular hub linking numerous signaling pathways in a cell. Specific GSK3β inhibitors have anti-depressant effects and reduce depressive-like behavior in animal models of depression. Therefore, GSK3β is suggested to be engaged in the pathogenesis of major depressive disorder, and to be a target and/or modifier of anti-depressants’ action. In this review, we discuss abnormalities in the activity of GSK3β and its upstream regulators in different brain regions during depressive episodes. Additionally, putative role(s) of GSK3β in the pathogenesis of depression and the influence of anti-depressants on GSK3β activity are discussed.
Collapse
|
5
|
Varinthra P, Liu IY. Molecular basis for the association between depression and circadian rhythm. Tzu Chi Med J 2019; 31:67-72. [PMID: 31007484 PMCID: PMC6450147 DOI: 10.4103/tcmj.tcmj_181_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depression is a life-threatening psychiatric disorder and a major public health concern worldwide with an incidence of 5% and a lifetime prevalence of 15%-20%. It is related with the social disability, decreased quality of life, and a high incidence of suicide. Along with increased depressive cases, health care cost in treating patients suffering from depression has also surged. Previous evidence have reported that depressed patients often exhibit altered circadian rhythms. Circadian rhythm involves physical, mental, and behavioral changes in a daily cycle, and is controlled by the suprachiasmatic nucleus of the hypothalamus in responding to light and darkness in an environment. Circadian rhythm disturbance in depressive patients causes early morning waking, sleep disturbances, diurnal mood variation, changes of the mean core temperature, endocrine release, and metabolic functions. Many medical interventions have been used to treat depression; however, several adverse effects are noted. This article reviews the types, causes of depression, mechanism of circadian rhythm, and the relationship between circadian rhythm disturbance with depression. Pharmaceutical and alternative interventions used to treat depressed patients are also discussed.
Collapse
Affiliation(s)
- Peeraporn Varinthra
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Zhang H, Pu C, Wang Q, Tan X, Gou J, He H, Zhang Y, Yin T, Wang Y, Tang X. Physicochemical Characterization and Pharmacokinetics of Agomelatine-Loaded PLGA Microspheres for Intramuscular Injection. Pharm Res 2018; 36:9. [PMID: 30411255 DOI: 10.1007/s11095-018-2538-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/29/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to design agomelatine loaded long acting injectable microspheres, with an eventual goal of reducing the frequency of administration and improving patient compliance in treatment of depression. METHODS AGM-loaded microspheres were prepared by an O/W emulsion solvent evaporation method. The physicochemical properties and in vitro performance of the microspheres were characterized. The pharmacokinetics of different formulations with various particle sizes and drug loadings were evaluated. RESULTS AGM-loaded microspheres with drug loading of 23.7% and particle size of 60.2 μm were obtained. The in vitro release profiles showed a small initial burst release (7.36%) followed by a fast release, a period of lag time and a second accelerated release. Pore formation and pore closure were observed in vitro, indicating that the release of drug from microspheres is dominated by water-filled pores. Pharmacokinetic studies showed that AGM microspheres could release up to 30 days in vivo at a steady plasma concentration. As well, particle size and drug loading could significantly influence the in vivo release of AGM microspheres. CONCLUSIONS AGM-loaded microspheres are a promising carrier for the treatment of major depressant disorder.
Collapse
Affiliation(s)
- Hongjuan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Chenguang Pu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Qiao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xinyi Tan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Tian Yin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yanjiao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
7
|
Strawn JR, Geracioti L, Rajdev N, Clemenza K, Levine A. Pharmacotherapy for generalized anxiety disorder in adult and pediatric patients: an evidence-based treatment review. Expert Opin Pharmacother 2018; 19:1057-1070. [PMID: 30056792 DOI: 10.1080/14656566.2018.1491966] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Generalized anxiety disorder (GAD) often begins during adolescence or early adulthood and persists throughout the lifespan. Randomized controlled trials support the efficacy of selective serotonin and selective serotonin norepinephrine reuptake inhibitors (SSRIs and SNRIs, respectively), as well as benzodiazepines, azapirones, anti-adrenergic medications, melatonin analogs, second-generation antipsychotics, kava, and lavender oil in GAD. However, psychopharmacologic treatment selection requires clinicians to consider multiple factors, including age, co-morbidity, and prior treatment. Areas covered: The authors review the literature concerning pharmacotherapy for pediatric and adult patients with GAD with specific commentary on the efficacy and tolerability of selected agents in these age groups. The authors describe an algorithmic approach to the pediatric and adult patient with GAD and highlight considerations for the use of selected medications in these patients. Expert opinion: In adults with GAD, SSRIs and SNRIs represent the first-line psychopharmacologic treatment while second-line pharmacotherapies include buspirone, benzodiazepines, SGAs, and pregabalin. In pediatric patients with GAD, SSRIs should be considered the first line pharmacotherapy and psychotherapy enhances antidepressant response.
Collapse
Affiliation(s)
- Jeffrey R Strawn
- a University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Laura Geracioti
- a University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Neil Rajdev
- a University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | | | - Amir Levine
- b Columbia University , New York City , NY , USA
| |
Collapse
|
8
|
Altınyazar V, Kiylioglu N. Insomnia and dementia: is agomelatine treatment helpful? Case report and review of the literature. Ther Adv Psychopharmacol 2016; 6:263-8. [PMID: 27536345 PMCID: PMC4971602 DOI: 10.1177/2045125316646064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The treatment of sleep disorders in Alzheimer's disease (AD) may be quite challenging in elderly patients because of drug side effects or interactions and comorbid local or systemic diseases. Here, we report a patient with AD, who was suffering from severe insomnia and depression. We ordered agomelatine for the treatment of insomnia in this patient, and it was quite helpful not only for insomnia but also for depression and for the cognitive symptoms related with dementia. Our aim was to share these observations for similar patients.
Collapse
Affiliation(s)
- Vesile Altınyazar
- Department of Psychiatry, Medical Faculty, Adnan Menderes University, Aydin, 09100, Turkey
| | - Nefati Kiylioglu
- Department of Neurology, Medical Faculty, Adnan Menderes University, Aydin, 09100, Turkey
| |
Collapse
|
9
|
Abstract
Depression and coronary heart disease (CHD) are leading causes of disability and show a high comorbidity. Furthermore, depression is an independent risk factor for an unfavorable course and increased mortality in patients with CHD. In contrast, successful treatment of depression can reduce the risk of cardiac events. Currently, there are several treatment options for the management of depression in CHD, including self-management strategies, psychotherapy, pharmacotherapy and collaborative care models. This article provides an overview of the epidemiology of depression in CHD, the mechanisms of association and the current state of evidence with respect to the different treatment options.
Collapse
|
10
|
Urrestarazu E, Iriarte J. Clinical management of sleep disturbances in Alzheimer's disease: current and emerging strategies. Nat Sci Sleep 2016; 8:21-33. [PMID: 26834500 PMCID: PMC4716729 DOI: 10.2147/nss.s76706] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sleep and circadian disorders in Alzheimer's disease (AD) are more frequent than in the general population and appear early in the course of the disease. Quality of sleep and quality of life are parallel in these patients, and such disorders also represent a heavy burden for caregivers. Although alterations in melatonin and hypocretins (orexins) seem to play a key role in the origin of these disturbances, the etiology of these disorders is multifactorial, including many factors such as environment, behavior, treatments, and comorbidities, among others. A comprehensive evaluation of sleep in each patient is essential in the design of the treatment that includes nonpharmacological and pharmacological approaches. One particularly interesting point is the possibility of a role of sleep disorders in the pathogenesis of AD, raising the possibility that treating the sleep disorder may alter the course of the disease. In this review, we present an update on the role of sleep disorders in AD, the bidirectional influence of sleep problems and AD, and treatment options. Behavioral measures, bright light therapy (BLT), melatonin, and other drugs are likely well known and correctly managed by the physicians in charge of these patients. In spite of the multiple treatments used, evidence of efficacy is scarce and more randomized double-blind placebo-controlled studies are needed. Future directions for treatment are the establishment of BLT protocols and the development of drugs with new mechanisms of action, especially hypocretin receptor antagonists, melatonin receptor agonists, and molecules that modulate the circadian clock.
Collapse
Affiliation(s)
- Elena Urrestarazu
- Sleep Unit, Clinical Neurophysiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Jorge Iriarte
- Sleep Unit, Clinical Neurophysiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
11
|
Tang F, Zhou R, Cheng Z, Yang G, Chen A, Liu Z, Tan H, Yang S, Li S, Mu L, Yu P. Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products of agomelatine in Chinese subjects. Acta Pharm Sin B 2016; 6:71-8. [PMID: 26904401 PMCID: PMC4724689 DOI: 10.1016/j.apsb.2015.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to apply the reference-scaled average bioequivalence (RSABE) approach to evaluate the bioequivalence of 2 formulations of agomelatine, and to investigate the pharmacokinetic properties of agomelatine in Chinese healthy male subjects. This was performed in a single-dose, randomized-sequence, open-label, four-way crossover study with a one-day washout period between doses. Healthy Chinese males were randomly assigned to receive 25 mg of either the test or reference formulation. The formulations were considered bioequivalent if 90% confidence intervals (CIs) for the log-transformed ratios and ratio of geometric means (GMR) of AUC and Cmax of agomelatine were within the predetermined bioequivalence range based on RSABE method. Results showed that both of the 90% CIs for the log-transformed ratios of AUC and Cmax of 7-desmethyl-agomelatine and 3-hydroxy-agomelatine were within the predetermined bioequivalence range. The 90% CIs for natural log-transformed ratios of Cmax, AUC0–t and AUC0–∞ of agomelatine (104.42–139.86, 101.33–123.83 and 97.90–117.94) were within the RSABE acceptance limits, and 3-hydroxy-agomelatine (105.55–123.03, 101.95–109.10 and 101.72–108.70) and 7-desmethyl-agomelatine (104.50–125.23, 102.36–111.50 and 101.62–110.64) were within the FDA bioequivalence definition intervals (0.80–1.25 for AUC and 0.75–1.33 for Cmax). The RSABE approach was successful in evaluating the bioequivalence of these two formulations.
Collapse
|
12
|
Markers of Oxidative Stress and Neuroprogression in Depression Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:898393. [PMID: 26078821 PMCID: PMC4453280 DOI: 10.1155/2015/898393] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023]
Abstract
Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed.
Collapse
|
13
|
Pescosolido N, Gatto V, Stefanucci A, Rusciano D. Oral treatment with the melatonin agonist agomelatine lowers the intraocular pressure of glaucoma patients. Ophthalmic Physiol Opt 2015; 35:201-5. [DOI: 10.1111/opo.12189] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/29/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Nicola Pescosolido
- Facoltà di Medicina e Odontoiatria; Università di Roma La Sapienza; Rome Italy
| | - Vittorio Gatto
- Facoltà di Medicina e Odontoiatria; Università di Roma La Sapienza; Rome Italy
| | - Alessio Stefanucci
- Facoltà di Medicina e Odontoiatria; Università di Roma La Sapienza; Rome Italy
| | | |
Collapse
|
14
|
Abstract
INTRODUCTION Insomnia is typified by a difficulty in sleep initiation, maintenance and/or quality (non-restorative sleep) resulting in significant daytime distress. AREAS COVERED This review summarizes the available efficacy and safety data for drugs currently in the pipeline for treating insomnia. Specifically, the authors performed MEDLINE and internet searches using the keywords 'Phase II' and 'insomnia'. The drugs covered target GABAA (zaleplon-CR, lorediplon, EVT-201), orexin (filorexant, MIN-202), histamine-H1 (LY2624803), serotonin 5-HT2A (ITI-007), melatonin/serotonin5-HT1A (piromelatine) and melatonin (indication expansions of prolonged-release melatonin and tasimelteon for pediatric sleep and circadian rhythm disorders) receptors. EXPERT OPINION Low-priced generic environments and high development costs limit the further development of drugs that treat insomnia. However, the bidirectional link between sleep and certain comorbidities may encourage development of specific drugs for comorbid insomnia. New insomnia therapies will most likely move away from GABAAR receptors' modulation to more subtle neurological pathways that regulate the sleep-wake cycle.
Collapse
Affiliation(s)
- Nava Zisapel
- Tel Aviv University, Department of Neurobiology, The George S Wise Faculty of Life Sciences , Tel Aviv 69978 , Israel +972 3 6409611 ; +972 3 6407643 ;
| |
Collapse
|
15
|
Laudon M, Frydman-Marom A. Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders. Int J Mol Sci 2014; 15:15924-50. [PMID: 25207602 PMCID: PMC4200764 DOI: 10.3390/ijms150915924] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 12/12/2022] Open
Abstract
Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon) have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions.
Collapse
Affiliation(s)
- Moshe Laudon
- Neurim Pharmaceuticals Ltd., 27 Habarzel St. Tel-Aviv 6971039, Israel.
| | | |
Collapse
|
16
|
Aguiar CCT, Almeida AB, Araújo PVP, Vasconcelos GS, Chaves EMC, do Vale OC, Macêdo DS, Leal LKAM, de Barros Viana GS, Vasconcelos SMM. Effects of agomelatine on oxidative stress in the brain of mice after chemically induced seizures. Cell Mol Neurobiol 2013; 33:825-35. [PMID: 23801192 DOI: 10.1007/s10571-013-9949-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022]
Abstract
Agomelatine is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties. We analyzed whether agomelatine has antioxidant properties. Antioxidant activity of agomelatine (25, 50, or 75 mg/kg, i.p.) or melatonin (50 mg/kg) was investigated by measuring lipid peroxidation levels, nitrite content, and catalase activities in the prefrontal cortex, striatum, and hippocampus of Swiss mice pentylenetetrazole (PTZ) (85 mg/kg, i.p.), pilocarpine (400 mg/kg, i.p.), picrotoxin (PTX) (7 mg/kg, i.p.), or strychnine (75 mg/kg, i.p.) induced seizure models. In the pilocarpine-induced seizure model, all dosages of agomelatine or melatonin showed a significant decrease in TBARS levels and nitrite content in all brain areas when compared to controls. In the strychnine-induced seizure model, all dosages of agomelatine and melatonin decreased TBARS levels in all brain areas, and agomelatine at low doses (25 or 50 mg/kg) and melatonin decreased nitrite contents, but only agomelatine at 25 or 50 mg/kg showed a significant increase in catalase activity in three brain areas when compared to controls. Neither melatonin nor agomelatine at any dose have shown no antioxidant effects on parameters of oxidative stress produced by PTX- or PTZ-induced seizure models when compared to controls. Our results suggest that agomelatine has antioxidant activity as shown in strychnine- or pilocarpine-induced seizure models.
Collapse
Affiliation(s)
- Carlos Clayton Torres Aguiar
- School of Medicine, University of Fortaleza (UNIFOR)/RENORBIO, Rua Desembargador Floriano Benevides Magalhães, 221 3º Andar, Fortaleza, Ceará, 60811-690, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Wang S, Tian Y, Song L, Lim G, Tan Y, You Z, Chen L, Mao J. Exacerbated mechanical hyperalgesia in rats with genetically predisposed depressive behavior: role of melatonin and NMDA receptors. Pain 2012; 153:2448-2457. [PMID: 23046768 DOI: 10.1016/j.pain.2012.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/16/2012] [Accepted: 08/31/2012] [Indexed: 02/05/2023]
Abstract
A connection between pain and depression has long been recognized in the clinical setting; however, its mechanism remains unclear. This study showed that mechanical hyperalgesia induced by unilateral temporomandibular joint (TMJ) inflammation was exacerbated in Wistar-Kyoto (WKY) rats with genetically predisposed depressive behavior. Reciprocally, TMJ inflammation enhanced depressive behavior such that a lower nociceptive threshold correlated with a higher score of depressive behavior in the same WKY rats. As compared with Wistar rats, WKY rats showed a lower plasma melatonin level, downregulation of the melatonin MT1 receptor, but upregulation of the NR1 subunit of the NMDA receptor in the ipsilateral trigeminal subnucleus caudalis (Sp5C). Intracisternal administration of 6-chloromelatonin (250 μg, twice daily for 7 days) concurrently attenuated mechanical hyperalgesia and depressive behavior in WKY rats as well as downregulated the NR1 expression in the ipsilateral Sp5C. In patch-clamp recordings, melatonin dose-dependently decreased NMDA-induced currents in spinal cord dorsal horn substantia gelatinosa neurons. These results demonstrate a reciprocal relationship between TMJ inflammation-induced mechanical hyperalgesia and depressive behavior and suggest that the central melatoninergic system, through modulation of the NMDA receptor expression and activity, may play a role in the mechanisms of the comorbidity between pain and depression.
Collapse
Affiliation(s)
- Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Department of Physiology, Southern Medical University, Guangzhou, China Department of Anesthesia, West China Hospital, Sichuan University, Chengdu, Sichuan, China Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Paulis L, Simko F, Laudon M. Cardiovascular effects of melatonin receptor agonists. Expert Opin Investig Drugs 2012; 21:1661-78. [PMID: 22916799 DOI: 10.1517/13543784.2012.714771] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Melatonin synchronizes circadian rhythms with light/dark period and it was demonstrated to correct chronodisruption. Several melatonin receptor agonists with improved pharmacokinetics or increased receptor affinity are being developed, three of them are already in clinical use. However, the actions of melatonin extend beyond chronobiology to cardiovascular and metabolic systems as well. Given the high prevalence of cardiovascular disease and their common occurrence with chronodisruption, it is of utmost importance to classify the cardiometabolic effects of the newly approved and putative melatoninergic drugs. AREAS COVERED In the present review, the available (although very sparse) data on such effects, in particular by the approved (circadin, ramelteon, agomelatine) or clinically advanced (tasimelteon, piromelatine = Neu-P11, TIK-301) compounds are summarized. The authors have searched for an association with blood pressure, vascular reactivity, ischemia, myocardial and vascular remodeling and metabolic syndrome. EXPERT OPINION The data suggest that cardiovascular effects of melatonin are at least partly mediated via MT(1)/MT(2) receptors and associated with its chronobiotic action. Therefore, despite the sparse direct evidence, it is believed that these effects will be shared by melatonin analogs as well. With the expected approval of novel melatoninergic compounds, it is suggested that the investigation of their cardiovascular effects should no longer be neglected.
Collapse
Affiliation(s)
- Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108, Bratislava, Slovakia.
| | | | | |
Collapse
|
20
|
Aguiar CCT, Almeida AB, Araújo PVP, Vasconcelos GS, Chaves EMC, do Vale OC, Macêdo DS, de Sousa FCF, Viana GSDB, Vasconcelos SMM. Anticonvulsant effects of agomelatine in mice. Epilepsy Behav 2012; 24:324-8. [PMID: 22658946 DOI: 10.1016/j.yebeh.2012.04.134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/31/2012] [Accepted: 04/27/2012] [Indexed: 11/25/2022]
Abstract
Agomelatine is a potent MT1 and MT2 melatonin receptor agonist and a 5-HT2C serotonin receptor antagonist. We analyzed whether agomelatine has anticonvulsant properties. The anticonvulsant activity of agomelatine (25, 50 or 75 mg/kg, i.p.) was evaluated in mouse models of pentylenetetrazole (PTZ-85 mg/kg, i.p.), pilocarpine (400mg/kg, i.p.), picrotoxin (7 mg/kg, i.p.), strychnine (75 mg/kg, i.p.) or electroshock-induced convulsions. In the PTZ-induced seizure model, agomelatine (at 25 or 50mg/kg) showed a significant increase in latency to convulsion, and agomelatine (at 50 or 75 mg/kg) also increased significantly time until death. In the pilocarpine-induced seizure model, only agomelatine in high doses (75 mg/kg) showed a significant increase in latency to convulsions and in time until death. In the strychnine-, electroshock- and picrotoxin-induced seizure models, agomelatine caused no significant alterations in latency to convulsions and in time until death when compared to controls. Our results suggest that agomelatine has anticonvulsant activity shown in PTZ- or pilocarpine-induced seizure models.
Collapse
Affiliation(s)
- Carlos Clayton Torres Aguiar
- School of Medicine, University of Fortaleza (UNIFOR)/RENORBIO, Rua Desembargador Floriano Benevides Magalhães, 221 3° Andar-60811-690, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Bonnefond A, Clément N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, Dechaume A, Payne F, Roussel R, Czernichow S, Hercberg S, Hadjadj S, Balkau B, Marre M, Lantieri O, Langenberg C, Bouatia-Naji N, Charpentier G, Vaxillaire M, Rocheleau G, Wareham NJ, Sladek R, McCarthy MI, Dina C, Barroso I, Jockers R, Froguel P. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 2012; 44:297-301. [PMID: 22286214 PMCID: PMC3773908 DOI: 10.1038/ng.1053] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies have revealed that common noncoding variants in MTNR1B (encoding melatonin receptor 1B, also known as MT(2)) increase type 2 diabetes (T2D) risk(1,2). Although the strongest association signal was highly significant (P < 1 × 10(-20)), its contribution to T2D risk was modest (odds ratio (OR) of ∼1.10-1.15)(1-3). We performed large-scale exon resequencing in 7,632 Europeans, including 2,186 individuals with T2D, and identified 40 nonsynonymous variants, including 36 very rare variants (minor allele frequency (MAF) <0.1%), associated with T2D (OR = 3.31, 95% confidence interval (CI) = 1.78-6.18; P = 1.64 × 10(-4)). A four-tiered functional investigation of all 40 mutants revealed that 14 were non-functional and rare (MAF < 1%), and 4 were very rare with complete loss of melatonin binding and signaling capabilities. Among the very rare variants, the partial- or total-loss-of-function variants but not the neutral ones contributed to T2D (OR = 5.67, CI = 2.17-14.82; P = 4.09 × 10(-4)). Genotyping the four complete loss-of-function variants in 11,854 additional individuals revealed their association with T2D risk (8,153 individuals with T2D and 10,100 controls; OR = 3.88, CI = 1.49-10.07; P = 5.37 × 10(-3)). This study establishes a firm functional link between MTNR1B and T2D risk.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Centre National de la Recherche Scientifique Unité Mixte de Recherche, Lille Pasteur Institute, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Major depression is one of the leading causes of premature death and disability. Although available drugs are effective, they also have substantial limitations. Recent advances in our understanding of the fundamental links between chronobiology and major mood disorders, as well as the development of new drugs that target the circadian system, have led to a renewed focus on this area. In this review, we summarise the associations between disrupted chronobiology and major depression and outline new antidepressant treatment strategies that target the circadian system. In particular, we highlight agomelatine, a melatonin-receptor agonist and selective serotonergic receptor subtype (ie, 5-HT(2C)) antagonist that has chronobiotic, antidepressant, and anxiolytic effects. In the short-term, agomelatine has similar antidepressant efficacy to venlafaxine, fluoxetine, and sertraline and, in the longer term, fewer patients on agomelatine relapse (23·9%) than do those receiving placebo (50·0%). Patients with depression treated with agomelatine report improved sleep quality and reduced waking after sleep onset. As agomelatine does not raise serotonin levels, it has less potential for the common gastrointestinal, sexual, or metabolic side-effects that characterise many other antidepressant compounds.
Collapse
Affiliation(s)
- Ian B Hickie
- Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, Australia.
| | | |
Collapse
|
24
|
Abstract
OPINION STATEMENT With the growth of the 24-hour global marketplace, a substantial proportion of workers are engaged in nontraditional work schedules and frequent jet travel across multiple time zones. Thus, shift work disorder and jet lag are prevalent in our 24/7 society and have been associated with significant health and safety repercussions. In both disorders, treatment strategies are based on promoting good sleep hygiene, improving circadian alignment, and targeting specific symptoms.Treatment of shift work must be tailored to the type of shift. For a night worker, circadian alignment can be achieved with bright light exposure during the shift and avoidance of bright light (with dark or amber sunglasses) toward the latter portion of the work period and during the morning commute home. If insomnia and/or excessive sleepiness are prominent complaints despite behavioral approaches and adequate opportunity for sleep, melatonin may be administered prior to the day sleep period to improve sleep, and alertness during work can be augmented by caffeine and wake-promoting agents.For jet lag, circadian adaptation is suggested only for travel greater than 48 h, with travel east more challenging than travel west. Although advancing sleep and wake times and circadian timing for eastward travel with evening melatonin and morning bright light several days prior to departure can help avoid jet lag at the new destination, this approach may be impractical for many people, Therefore, strategies for treatment at the destination, such as avoidance of early morning light and exposure to late-morning and afternoon light alone or in conjunction with bedtime melatonin, can accelerate re-entrainment following eastward travel. For westward travel, a circadian delay can be achieved after arrival with afternoon and early-evening light with bedtime melatonin.Good sleep hygiene practices, together with the application of circadian principles, can improve sleep quality, alertness, performance, and safety in shift workers and jet travelers. However, definitive multicenter randomized controlled clinical trials are still needed, using traditional efficacy outcomes such as sleep and performance as well as novel biomarkers of health.
Collapse
Affiliation(s)
- Phyllis C Zee
- , 710 North Lake Shore Drive, 5th Floor, Chicago, IL, 60611, USA
| | | |
Collapse
|
25
|
Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S, Kanba S. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1306-16. [PMID: 20654672 DOI: 10.1016/j.pnpbp.2010.07.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/29/2010] [Accepted: 07/14/2010] [Indexed: 01/06/2023]
Abstract
Microglia, which are a major glial component of the central nervous system (CNS), have recently been suggested to mediate neuroinflammation through the release of pro-inflammatory cytokines and nitric oxide (NO). Microglia are also known to play a critical role as resident immunocompetent and phagocytic cells in the CNS. Immunological dysfunction has recently been demonstrated to be associated with the pathophysiology of depression. However, to date there have only been a few studies on the relationship between microglia and depression. We therefore investigated if antidepressants can inhibit microglial activation in vitro. Our results showed that the selective serotonin reuptake inhibitors (SSRIs) paroxetine and sertraline significantly inhibited the generation of NO and tumor necrosis factor (TNF)-α from interferon (IFN)-γ-activated 6-3 microglia. We further investigated the intracellular signaling mechanism underlying NO and TNF-α release from IFN-γ-activated 6-3 microglia. Our results suggest that paroxetine and sertraline may inhibit microglial activation through inhibition of IFN-γ-induced elevation of intracellular Ca(2+). Our results suggest that the inhibitory effect of paroxetine and sertraline on microglial activation may not be a prerequisite for antidepressant function, but an additional beneficial effect.
Collapse
Affiliation(s)
- Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka City, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Müssig K, Staiger H, Machicao F, Häring HU, Fritsche A. Genetic variants in MTNR1B affecting insulin secretion. Ann Med 2010; 42:387-93. [PMID: 20597807 DOI: 10.3109/07853890.2010.502125] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The incidence of type 2 diabetes mellitus has markedly increased worldwide over the past decades. Pancreatic beta-cell dysfunction as well as central and peripheral insulin resistance appears to be elementary features in the pathophysiology of type 2 diabetes mellitus. Major environmental conditions predisposing to the development of type 2 diabetes are excessive food intake and sedentary life-style on the background of a genetic predisposition. Recent genome-wide association studies identified several novel type 2 diabetes risk genes, with impaired pancreatic beta-cell function as the underlying mechanism of increased diabetes risk in the majority of genes. Many of the novel type 2 diabetes risk genes, including MTNR1B which encodes one of the two known human melatonin receptors, were unexpected at first glance. However, previous animal as well as human studies already pointed to a significant impact of the melatonin system on the regulation of glucose homeostasis, in addition to its well known role in modulation of sleep and circadian rhythms. This brief review aims to give an overview of how alterations in the melatonin system could contribute to an increased diabetes risk, paying special attention to the role of melatonin receptors in pancreatic beta-cell function.
Collapse
Affiliation(s)
- Karsten Müssig
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University, Member of the German Centre for Diabetes Research (DZD), 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Garaulet M, Madrid JA. Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv Drug Deliv Rev 2010; 62:967-78. [PMID: 20580916 DOI: 10.1016/j.addr.2010.05.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/05/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
The present review starts from the classical physiological and nutritional studies related with food intake control, digestion, transport and absorption of nutrients. It continues with studies related with the metabolism of adipose tissue, and finish with modern experiments in genetics and molecular biology - all from a fresh, chronobiological point of view. Obesity will be explained as a fault in the circadian system, as pathology associated with "chronodisruption". The main gaps in chronobiological research related to obesity will be also identified and chronobiological-based therapies will be proposed in order to allow the resetting of the circadian rhythm among obese subjects.
Collapse
|