1
|
Nagata A, Akagi Y, Masoud SS, Yamanaka M, Kittaka A, Uesugi M, Odagi M, Nagasawa K. Stereoselective Synthesis of Four Calcitriol Lactone Diastereomers at C23 and C25. J Org Chem 2019; 84:7630-7641. [DOI: 10.1021/acs.joc.9b00403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akiko Nagata
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588,
Tokyo, Japan
| | - Yusuke Akagi
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588,
Tokyo, Japan
| | - Shadi Sedghi Masoud
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588,
Tokyo, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku 171-8501, Tokyo, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi 173-8605, Tokyo, Japan
| | | | - Minami Odagi
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588,
Tokyo, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588,
Tokyo, Japan
| |
Collapse
|
2
|
Wang W, Zhao GD, Cui YJ, Li MQ, Liu ZP. Synthesis of 1α,25-dihydroxyvitamin D 3 analogues with α,α-difluorocycloketone at the CD-ring side chains and their biological properties in ovariectomized rats. J Steroid Biochem Mol Biol 2019; 186:66-73. [PMID: 30253225 DOI: 10.1016/j.jsbmb.2018.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022]
Abstract
Two novel 1α,25-dihydroxyvitamin D3 derivatives containing a α,α-difluorocyclopentanone (3) or α,α-difluorocyclohexanone (4) moiety at the CD-ring side chains were designed, synthesized, and evaluated for their biological properties on restoring bone mass in ovariectomized (OVX) rats with established osteopenia. The synthesis of compounds 3 and 4 utilized the Wittig-Horner coupling to build up the vitamin D conjugated triene system, followed by the introduction of the cycloketone fragments at the side chain, and subsequent α,α-difluorination of the ketone by the treatment of the derived silyl enol ether with Selectfluor, as the key synthetic steps. In comparison with the natural 1α,25-dihydroxyvitamin D3 (calcitriol; 200 ng/kg/day), oral administration of compounds 3 and 4 at the dose of 25 ng/kg/day for 6 weeks led to much improved bone mass and bone density related parameters, while maintaining normal serum calcium and serum phosphorus levels. The immunohistochemistry results showed that both compounds remarkably decreased in osteoclast number and moderately decreased in osteoblast number on trabecular bone surface. Therefore, our findings suggested that compounds 3 and 4 successfully rescue bone loss by suppression on bone turnover in OVX rat models.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Jinan, 250012, PR China; Shandong Provincial Key Laboratory of Oral Tissue, Regeneration, Department of Bone Metabolism, School of Stomatology, Shandong University, Jinan, 250012, PR China
| | - Guo-Dong Zhao
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Jinan, 250012, PR China
| | - Ying-Jie Cui
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Jinan, 250012, PR China
| | - Min-Qi Li
- Shandong Provincial Key Laboratory of Oral Tissue, Regeneration, Department of Bone Metabolism, School of Stomatology, Shandong University, Jinan, 250012, PR China.
| | - Zhao-Peng Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Jinan, 250012, PR China.
| |
Collapse
|
3
|
Szybinski M, Sektas K, Sicinski RR, Plum LA, Frelek J, DeLuca HF. Design, synthesis and biological properties of seco-d-ring modified 1α,25-dihydroxyvitamin D 3 analogues. J Steroid Biochem Mol Biol 2017; 171:144-154. [PMID: 28285018 DOI: 10.1016/j.jsbmb.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
Abstract
As a continuation of our efforts directed to the structure-activity relationship studies of vitamin D compounds, we present in this paper the synthesis of new analogues of 1α,25-(OH)2D3 characterized by numerous structural modifications, especially a cleaved D ring. Total synthesis of the CD fragment required for the construction of the target vitamins was based on the Stork approach. The structure of the key intermediate - bicyclic hydroxy lactone - was established by crystallographic and electronic circular dichroism (ECD) spectral analysis. Following the attachment of the hydroxyalkyl side chain, the formed D-seco Grundmann ketone was subjected to Wittig-Horner coupling with the corresponding A-ring phosphine oxides providing two desired D-seco analogues of 19-nor-1α,25-(OH)2D3, one without a substituent at C-2 and the other possessing a 2-exomethylene group. Both compounds were biologically tested and the latter was found to be more active in in vitro tests. Despite so many structural changes introduced in its structure, the biological activity of the 2-methylene analogue approached that of the natural hormone. The synthesized D-seco vitamins, however, proved to be inactive on bone and intestine in vivo.
Collapse
Affiliation(s)
- Marcin Szybinski
- Department of Biochemistry, University of Wisconsin-Madison,433 Babcock Drive, Madison, WI 53706, United States; Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Sektas
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Rafal R Sicinski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison,433 Babcock Drive, Madison, WI 53706, United States
| | - Jadwiga Frelek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin-Madison,433 Babcock Drive, Madison, WI 53706, United States.
| |
Collapse
|
4
|
Wang Q, Lin Z, Kim TK, Slominski AT, Miller DD, Li W. Total synthesis of biologically active 20S-hydroxyvitamin D3. Steroids 2015; 104:153-62. [PMID: 26433048 PMCID: PMC4659745 DOI: 10.1016/j.steroids.2015.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022]
Abstract
A total synthetic strategy of 20S-hydroxyvitamin D3 [20S-(OH)D3] involving modified synthesis of key intermediates 7 and 12, Grignard reaction to stereoselectively generate 20S-OH and Wittig-Horner coupling to establish D3 framework, was completed in 16 steps with an overall yield of 0.4%. The synthetic 20S-(OH)D3 activated vitamin D receptor (VDR) and initiated the expression of downstream genes. In addition, 20S-(OH)D3 showed similar inhibitory potency as calcitriol [1,25(OH)2D3] on proliferation of melanoma cells.
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Zongtao Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Veteran Affairs Medical Center, Birmingham, AL 35294, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
5
|
Kulesza U, Plum LA, DeLuca HF, Mouriño A, Sicinski RR. Novel 9-Alkyl- and 9-Alkylidene-Substituted 1α,25-Dihydroxyvitamin D3 Analogues: Synthesis and Biological Examinations. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Urszula Kulesza
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Lori A. Plum
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Hector F. DeLuca
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Antonio Mouriño
- Departamento
de Química Orgánica, Laboratorio de Investigación
Ignacio Ribas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rafal R. Sicinski
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Liu C, Zhao GD, Mao X, Suenaga T, Fujishima T, Zhang CM, Liu ZP. Synthesis and biological evaluation of 1α,25-dihydroxyvitamin D3 analogues with aromatic side chains attached at C-17. Eur J Med Chem 2014; 85:569-75. [DOI: 10.1016/j.ejmech.2014.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 01/30/2023]
|
7
|
Compound screening and transcriptional profiling in human primary keratinocytes: a brief guideline. Methods Mol Biol 2013. [PMID: 24281872 DOI: 10.1007/7651_2013_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cultured human primary keratinocytes constitute suitable targets for in-depth evaluation of the proliferative or differentiative potential of compounds. There is, however, a double-edged and intrinsically inseparable transition from biological activity to cytotoxicity for any agent under investigation. For that reason, we here first of all present an established protocol for the isolation, cultivation, and analysis of primary foreskin-derived keratinocytes. Taking calcitriol as example, we then reveal how a straightforward photometric cell culture assay can be exploited to assess overall cell viability in response to increasing compound doses. With predetermined cellular cytotoxicity at hand, physiologically meaningful (sub-toxic) compound concentrations for subsequent stimulation of cells can be readily selected, and, in doing so, differentially expressed genes with biological significance can be reliably identified.
Collapse
|
8
|
Carballa DM, Zacconi F, Kulesza U, Mouriño A, Torneiro M. Synthesis of 1α,25-dihydroxyvitamin D3 analogues with α-hydroxyalkyl substituents at C12. J Steroid Biochem Mol Biol 2013; 136:34-8. [PMID: 23098691 DOI: 10.1016/j.jsbmb.2012.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/08/2012] [Accepted: 10/12/2012] [Indexed: 11/20/2022]
Abstract
Convergent syntheses of three new analogues of 1α,25-dihydroxyvitamin D3 with α-hydroxyalkyl substituents at C12 (4a-c) are described. The A-ring and triene system of each analogue were assembled by a tandem Pd-catalysed intramolecular cyclization and Suzuki-Miyaura coupling process. The stereoselective introduction of substituents at C12 was achieved by Johnson-Claisen rearrangement on allylic alcohol 15 as the key step. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Diego M Carballa
- Departamento de Química Orgánica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
9
|
Takano Y, Mitsuhashi H, Ishizuka S, Takahashi K, Chokki M, Takenouchi K, Gao Q, Tanaka H, Hazato A, Tabe M, Furuya M, Manabe K, Ueno K. TEI-A00114: a new vitamin D3 analogue that inhibits neutrophil recruitment in an acute lung injury hamster model while showing reduced hypercalcemic activity. Steroids 2012; 77:1535-42. [PMID: 23046766 DOI: 10.1016/j.steroids.2012.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/09/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
While searching for vitamin D(3) analogues which inhibit neutrophil recruitment in the lung without elevating plasma calcium level, we found that (5Z,7E)-(1S,3R)-20(R)-[(5E)-(2S)-2-hydroxy-2-methyl-cyclopentanone-5-ylidene]methyl-9,10-secopregna-5,7,10(19)-triene-1,3-diol (TEI-A00114) had the best efficacy and calcemic action. TEI-A00114 has a vitamin D receptor affinity 2.5-fold weaker and a vitamin D binding protein affinity 330.9-fold weaker than those of 1α,25(OH)(2)D(3). The estimated effective doses for 40% inhibition (ED(40)) via peroral and intratracheal administration are 7.6 and 0.4 μg/kg, respectively. TEI-A00114 was also tested by inhaled administration, and its ED(40) was calculated as 0.2 μg/kg. The estimated 40% inhibitory concentration (IC(40)) of TEI-A00114 on interleukin (IL)-8 production induced by lipopolysaccharide and on IL-1β in human whole blood cells in vitro were 9.8 × 10(-8) or 1.8 × 10(-9)M, respectively. These levels of TEI-A00114's activities are equal to those of 1α,25(OH)(2)D(3). On the other hand, the calcemic action of TEI-A00114, which was evaluated at day 14 after sequential peroral quaque die administration, was 89-fold weaker (molar ratio) than that of 1α,25(OH)(2)D(3). These results indicate that TEI-A00114 has a dissociated profile between inhibition of neutrophil recruitment in the lung and calcemic action, suggesting its suitability over 1α,25(OH)(2)D(3) as a candidate for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Yasuhiro Takano
- Pharmacological Research Department, Pharmaceuticals Development Research Laboratories, Teijin Institute for Bio-Medical Research, Hino, Tokyo 191-8512, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Carballa DM, Rumbo A, Torneiro M, Maestro M, Mouriño A. Synthesis of (1α)-1,25-Dihydroxyvitamin D3with aβ-Positioned Seven-Carbon Side Chain at C(12). Helv Chim Acta 2012. [DOI: 10.1002/hlca.201200427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Carballa DM, Seoane S, Zacconi F, Pérez X, Rumbo A, Alvarez-Díaz S, Larriba MJ, Pérez-Fernández R, Muñoz A, Maestro M, Mouriño A, Torneiro M. Synthesis and Biological Evaluation of 1α,25-Dihydroxyvitamin D3 Analogues with a Long Side Chain at C12 and Short C17 Side Chains. J Med Chem 2012; 55:8642-56. [DOI: 10.1021/jm3008272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Diego M. Carballa
- Departamento de Química
Orgánica y Unidad Asociada al CSIC, Universidad de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Seoane
- Departamento de Fisiología—Centro
de Investigación en Medicina Molecular y Enfermedades Crónicas
(CIMUS), Universidad de Santiago de Compostela, 15782 Santiago de
Compostela, Spain
| | - Flavia Zacconi
- Departamento de Química
Orgánica y Unidad Asociada al CSIC, Universidad de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Xenxo Pérez
- Departamento de Química
Orgánica y Unidad Asociada al CSIC, Universidad de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Rumbo
- Departamento de Química
Orgánica y Unidad Asociada al CSIC, Universidad de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Alvarez-Díaz
- Instituto
de Investigaciones
Biomédicas “Alberto Sols”, CSIC—Universidad
Autónoma de Madrid, 28029 Madrid, Spain
| | - María Jesús Larriba
- Instituto
de Investigaciones
Biomédicas “Alberto Sols”, CSIC—Universidad
Autónoma de Madrid, 28029 Madrid, Spain
| | - Román Pérez-Fernández
- Departamento de Fisiología—Centro
de Investigación en Medicina Molecular y Enfermedades Crónicas
(CIMUS), Universidad de Santiago de Compostela, 15782 Santiago de
Compostela, Spain
| | - Alberto Muñoz
- Instituto
de Investigaciones
Biomédicas “Alberto Sols”, CSIC—Universidad
Autónoma de Madrid, 28029 Madrid, Spain
| | - Miguel Maestro
- Departamento de Química
Fundamental, Universidad de A Coruña, 15071 A Coruña,
Spain
| | - Antonio Mouriño
- Departamento de Química
Orgánica y Unidad Asociada al CSIC, Universidad de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Mercedes Torneiro
- Departamento de Química
Orgánica y Unidad Asociada al CSIC, Universidad de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Glebocka A, Chiellini G. A-ring analogs of 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 2012; 523:48-57. [DOI: 10.1016/j.abb.2011.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 01/07/2023]
|
13
|
Fraga R, Zacconi F, Sussman F, Ordóñez-Morán P, Muñoz A, Huet T, Molnár F, Moras D, Rochel N, Maestro M, Mouriño A. Design, synthesis, evaluation, and structure of vitamin D analogues with furan side chains. Chemistry 2011; 18:603-12. [PMID: 22162241 DOI: 10.1002/chem.201102695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Indexed: 12/14/2022]
Abstract
Based on the crystal structures of human vitamin D receptor (hVDR) bound to 1α,25-dihydroxy-vitamin D(3) (1,25 D) and superagonist ligands, we previously designed new superagonist ligands with a tetrahydrofuran ring at the side chain that optimize the aliphatic side-chain conformation through an entropy benefit. Following a similar strategy, four novel vitamin D analogues with aromatic furan side chains (3a, 3b, 4a, 4b) have now been developed. The triene system has been constructed by an efficient stereoselective intramolecular cyclization of an enol triflate (A-ring precursor) followed by a Suzuki-Miyaura coupling of the resulting intermediate with an alkenyl boronic ester (CD-side chain, upper fragment). The furan side chains have been constructed by gold chemistry. These analogues exhibit significant pro-differentiation effects and transactivation potency. The crystal structure of 3a in a complex with the ligand-binding domain of hVDR revealed that the side-chain furanic ring adopts two conformations.
Collapse
Affiliation(s)
- Ramón Fraga
- Departamento de Química Orgánica, Universidad de Santiago y Unidad Asociada al CSIC, Avda de las Ciencias s/n, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Regueira MA, Samanta S, Malloy PJ, Ordóñez-Morán P, Resende D, Sussman F, Muñoz A, Mouriño A, Feldman D, Torneiro M. Synthesis and Biological Evaluation of 1α,25-Dihydroxyvitamin D3 Analogues Hydroxymethylated at C-26. J Med Chem 2011; 54:3950-62. [DOI: 10.1021/jm200276y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- María A. Regueira
- Departamento de Química Orgánica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Shaonly Samanta
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5103, United States
| | - Peter J. Malloy
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5103, United States
| | - Paloma Ordóñez-Morán
- Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, 28029 Madrid, Spain
| | - Diana Resende
- Departamento de Química Orgánica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fredy Sussman
- Departamento de Química Orgánica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, 28029 Madrid, Spain
| | - Antonio Mouriño
- Departamento de Química Orgánica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - David Feldman
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5103, United States
| | - Mercedes Torneiro
- Departamento de Química Orgánica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Chen Y, Ju T. Enantioselective Synthesis of A Key A-Ring Intermediate for the Preparation of 1α,25-Dihydroxyvitamin D3. Org Lett 2010; 13:86-9. [DOI: 10.1021/ol102586w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tong Ju
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Kakuda S, Ishizuka S, Eguchi H, Mizwicki MT, Norman AW, Takimoto-Kamimura M. Structural basis of the histidine-mediated vitamin D receptor agonistic and antagonistic mechanisms of (23S)-25-dehydro-1α-hydroxyvitamin D3-26,23-lactone. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:918-26. [DOI: 10.1107/s0907444910020810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/01/2010] [Indexed: 11/10/2022]
Abstract
TEI-9647 antagonizes vitamin D receptor (VDR) mediated genomic actions of 1α,25(OH)2D3in human cells but is agonistic in rodent cells. The presence of Cys403, Cys410 or of both residues in the C-terminal region of human VDR (hVDR) results in antagonistic action of this compound. In the complexes of TEI-9647 with wild-type hVDR (hVDRwt) and H397F hVDR, TEI-9647 functions as an antagonist and forms a covalent adduct with hVDR according to MALDI–TOF MS. The crystal structures of complexes of TEI-9647 with rat VDR (rVDR), H305F hVDR and H305F/H397F hVDR showed that the agonistic activity of TEI-9647 is caused by a hydrogen-bond interaction with His397 or Phe397 located in helix 11. Both biological activity assays and the crystal structure of H305F hVDR complexed with TEI-9647 showed that the interaction between His305 and TEI-9647 is crucial for antagonist activity. This study indicates the following stepwise mechanism for TEI-9647 antagonism. Firstly, TEI-9647 forms hydrogen bonds to His305, which promote conformational changes in hVDR and draw Cys403 or Cys410 towards the ligand. This is followed by the formation of a 1,4-Michael addition adduct between the thiol (–SH) group of Cys403 or Cys410 and theexo-methylene group of TEI-9647.
Collapse
|
17
|
Eduardo-Canosa S, Fraga R, Sigüeiro R, Marco M, Rochel N, Moras D, Mouriño A. Design and synthesis of active vitamin D analogs. J Steroid Biochem Mol Biol 2010; 121:7-12. [PMID: 20346396 DOI: 10.1016/j.jsbmb.2010.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/10/2010] [Indexed: 11/18/2022]
Abstract
A review of the design and synthesis of structural analogs of the vitamin D hormone recently investigated in our laboratories, and the first report on a new class of vitamin D analogs characterized by an aromatic D-ring, is described.
Collapse
Affiliation(s)
- Silvina Eduardo-Canosa
- Departamento de Química Orgánica y Unidad Asociada al C.S.I.C., Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Gogoi P, Sigüeiro R, Eduardo S, Mouriño A. An Expeditious Route to 1α,25-Dihydroxyvitamin D3and Its Analogues by an Aqueous Tandem Palladium-Catalyzed A-Ring Closure and Suzuki Coupling to the C/D Unit. Chemistry 2010; 16:1432-5. [DOI: 10.1002/chem.200902972] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Antony P, Sigüeiro R, Huet T, Sato Y, Ramalanjaona N, Rodrigues LC, Mouriño A, Moras D, Rochel N. Structure−Function Relationships and Crystal Structures of the Vitamin D Receptor Bound 2α-Methyl-(20S,23S)- and 2α-Methyl-(20S,23R)-epoxymethano-1α,25-dihydroxyvitamin D3. J Med Chem 2010; 53:1159-71. [DOI: 10.1021/jm9014636] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pierre Antony
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Rita Sigüeiro
- Departamento de Química Orgánica and Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Spain
| | - Tiphaine Huet
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Yoshiteru Sato
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Nick Ramalanjaona
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Luis Cezar Rodrigues
- Departamento de Química Orgánica and Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Spain
| | - Antonio Mouriño
- Departamento de Química Orgánica and Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Spain
| | - Dino Moras
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Natacha Rochel
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
20
|
Fan J, Liu S, Du Y, Morrison J, Shipman R, Pang KS. Up-regulation of transporters and enzymes by the vitamin D receptor ligands, 1alpha,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther 2009; 330:389-402. [PMID: 19414624 DOI: 10.1124/jpet.108.149815] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The effects of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on gene expression and function were studied in Caco-2 cells. Microarray analyses, real-time quantitative polymerase chain reactions, and Western blotting were used to determine the mRNA and protein expression of transporters and enzymes after 1,25(OH)(2)D(3) or vehicle (0.1% ethanol) treatment for 1, 3, 6, and 10 days. The mRNA and protein expressions of the apical sodium-dependent bile acid transporter, oligopeptide transporter 1, multidrug resistance-associated protein (MRP) 3, and sulfotransferase 1E1 remained unchanged with 1,25(OH)(2)D(3) treatment, whereas those for CYP3A4, multidrug resistance protein 1, and MRP2 were significantly increased (P < 0.05). 1,25(OH)(2)D(3) treatment significantly enhanced MRP4 protein expression by increasing protein stability without affecting mRNA expression, as confirmed in cycloheximide experiments. Marked increase in 6beta-hydroxylation of testosterone by CYP3A4 was also observed in the 6-day 1,25(OH)(2)D(3)-treated (100 nM) cell lysate. The transport of [(3)H]digoxin, the P-glycoprotein (P-gp) substrate, after treatment with 100 nM 1,25(OH)(2)D(3) for 3 days revealed a higher apparent permeability (P(app)) value in the basal (B)-to-apical (A) direction over that of vehicle treatment (15.1 +/- 0.53 x 10(-6) versus 11.8 +/- 0.58 x 10(-6) cm/s; P < 0.05), whereas the P(app) in the A-to-B direction was unchanged; the efflux ratio was increased (from 5.8 to 8.0). Reduced cellular retention of 5-(and-6)-carboxy-2',7'-dichlorofluorescein, suggestive of higher MRP2 activity, was observed in the 3-day 100 nM 1,25(OH)(2)D(3)-treated cells over controls. Higher protein expression of CYP3A4, MRP2, P-gp, and MRP4 was also observed after a 6-day treatment with other vitamin D analogs (100 nM 1alpha-hydroxyvitamin D(3),1alpha-hydroxyvitamin D(2) or Hectorol, and 25-hydroxyvitamin D(3)) in Caco-2 cells, suggesting a role of 1,25(OH)(2)D(3) and analogs in the activation of enzymes and transporters via the vitamin D receptor.
Collapse
Affiliation(s)
- Jianghong Fan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Kakuda S, Okada K, Eguchi H, Takenouchi K, Hakamata W, Kurihara M, Takimoto-Kamimura M. Structure of the ligand-binding domain of rat VDR in complex with the nonsecosteroidal vitamin D3 analogue YR301. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:970-3. [PMID: 18997319 PMCID: PMC2581693 DOI: 10.1107/s1744309108026754] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 08/19/2008] [Indexed: 11/10/2022]
Abstract
Vitamin D receptor (VDR) is a ligand-inducible hormone receptor that mediates 1alpha,25(OH)(2)D(3) action, regulating calcium and phosphate metabolism, induces potent cell differentiation activity and has immunosuppressive effects. Analogues of 1alpha,25(OH)(2)D(3) have been used clinically for some years. However, the risk of potential side effects limits the use of these substances. LG190178 is a novel nonsecosteroidal ligand for VDR. (2S)-3-[4-(3-{4-[(2R)-2-hydroxy-3,3-dimethylbutoxy]-3-methylphenyl}pentan-3-yl)-2-methylphenoxy] propane-1,2-diol (YR301) is the only one of the four evaluated stereoisomers of LG190178 to have strong activity. To understand the strong activity of YR301, the crystal structure of YR301 complexed with the rat VDR ligand-binding domain (VDR LBD) was solved at 2.0 A resolution and compared with the structure of the VDR LBD-1alpha,25(OH)(2)D(3) complex. YR301 and 1alpha,25(OH)(2)D(3) share the same position and the diethylmethyl group occupies a similar space to the C and D rings of 1alpha,25(OH)(2)D(3). YR301 has two characteristic hydroxyl groups which contribute to its potent activity. The first is 2'-OH, which forms hydrogen bonds to the NE2 atoms of both His301 and His393. The other is 2-OH, which interacts with Ser233 OG and Arg270 NH1. These two hydroxyl groups of YR301 correspond exactly to 25-OH and 1-OH, respectively, of 1alpha,25(OH)(2)D(3). The terminal hydroxyl group (3-OH) of YR301 is directly hydrogen bonded to Arg270 and also interacts indirectly with Tyr232 OH and the backbone NH of Asp144 via water molecules. Additional derivatization of the terminal hydroxyl group using the positions of the water molecules might be useful for the design of more potent compounds.
Collapse
|
22
|
Abstract
Over the last 25 years roles have been established for vitamin D receptor (VDR) in influencing cell proliferation and differentiation. For example, murine knock-out approaches have revealed a role for the VDR in controlling mammary gland growth and function. These actions appear widespread, as the enzymes responsible for 1alpha,25-dihydroxycholecalciferol generation and degradation, and the VDR itself, are all functionally present in a wide range of epithelial and haematopoietic cell types. These findings, combined with epidemiological and functional data, support the concept that local, autocrine and paracrine VDR signalling exerts control over cell-fate decisions in multiple cell types. Furthermore, the recent identification of bile acid lithocholic acid as a VDR ligand underscores the environmental sensing role for the VDR. In vitro and in vivo dissection of VDR signalling in cancers (e.g. breast, prostate and colon) supports a role for targeting the VDR in either chemoprevention or chemotherapy settings. As with other potential therapeutics, it has become clear that cancer cells display de novo and acquired genetic and epigenetic mechanisms of resistance to these actions. Consequently, a range of experimental and clinical options are being developed to bring about more targeted actions, overcome resistance and enhance the efficacy of VDR-centred therapeutics.
Collapse
|
23
|
Chiellini G, Grzywacz P, Plum LA, Barycki R, Clagett-Dame M, DeLuca HF. Synthesis and biological properties of 2-methylene-19-nor-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactones--weak agonists. Bioorg Med Chem 2008; 16:8563-73. [PMID: 18722130 DOI: 10.1016/j.bmc.2008.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 01/25/2023]
Abstract
In a continuing effort to explore the 2-methylene-1alpha-hydroxy-19-norvitamin D(3) class of pharmacologically important vitamin D compounds, two novel 2-methylene-19-nor-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactones, GC-3 and HLV, were synthesized and biologically tested. Based on reports of similarly structured molecules, it was hypothesized that these compounds might act as antagonists, at least in vitro. The pathway designed to synthesize these compounds was based on two key steps: first, the Lythgoe-type Wittig-Horner coupling of Windaus-Grundmann-type ketone 18, with phosphine oxide 15, followed, later in the synthesis, by the Zn-mediated Reformatsky-type allylation of aldehyde 20 with methylbromomethylacrylate 8. Our biological data show that neither compound has antagonistic activity but acts as weak agonists in vitro and in vivo.
Collapse
Affiliation(s)
- Grazia Chiellini
- Department of Biochemistry, College of Agriculture and Life Sciences, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | | | |
Collapse
|
24
|
Oves D, Fernández S, Verlinden L, Bouillon R, Verstuyf A, Ferrero M, Gotor V. Novel A-ring homodimeric C-3-carbamate analogues of 1α,25-dihydroxyvitamin D3: Synthesis and preliminary biological evaluation. Bioorg Med Chem 2006; 14:7512-9. [PMID: 16879968 DOI: 10.1016/j.bmc.2006.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/30/2006] [Accepted: 07/06/2006] [Indexed: 11/20/2022]
Abstract
The synthesis of a new class of vitamin D3 analogues in which two units of 1alpha,25-dihydroxyvitamin D3 are linked at the C-3 position by a dicarbamate functionality of variable length is described. The analogues demonstrated no affinity for the vitamin D receptor and possessed no antiproliferative or transactivating properties.
Collapse
Affiliation(s)
- Daniel Oves
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo (Asturias), Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
González-Avión XC, Mouriño A, Rochel N, Moras D. Novel 1α,25-Dihydroxyvitamin D3 Analogues with the Side Chain at C12. J Med Chem 2006; 49:1509-16. [PMID: 16509569 DOI: 10.1021/jm049016g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plethora of actions of 1alpha,25(OH)2D3 in various systems suggested wide clinical applications of vitamin D nuclear receptor (VDR) ligands in treatments of inflammation, dermatological indication, osteoporosis, cancers, and autoimmune diseases. More than 3000 vitamin D analogues have been synthesized in order to reduce the calcemic side effects while maintaining the transactivation potency of the natural ligand. In light of the crystal structures of the vitamin D nuclear receptor (VDR), novel analogues of the hormone 1alpha,25(OH)2D3 with side chains attached to C-12 were synthesized via the convergent Wittig-Horner approach. Among the compounds studied, the analogue 2b showed the highest binding affinity for VDR and was the most potent at inducing VDR transcriptional activity in a transient transfection assay (20% of the transactivation activity of the natural ligand).
Collapse
Affiliation(s)
- Xosé C González-Avión
- Departamento de Química Organica y Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
26
|
Tocchini-Valentini G, Rochel N, Wurtz JM, Moras D. Crystal Structures of the Vitamin D Nuclear Receptor Liganded with the Vitamin D Side Chain Analogues Calcipotriol and Seocalcitol, Receptor Agonists of Clinical Importance. Insights into a Structural Basis for the Switching of Calcipotriol to a Receptor Antagonist by Further Side Chain Modification. J Med Chem 2004; 47:1956-61. [PMID: 15055995 DOI: 10.1021/jm0310582] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plethora of actions of 1alpha,25(OH)(2)D(3) in various systems suggested wide clinical applications of vitamin D nuclear receptor (VDR) ligands in treatments of inflammation, dermatological indication, osteoporosis, cancers, and autoimmune diseases. More than 3000 vitamin D analogues have been synthesized in order to reduce the calcemic side effects while maintaining the transactivation potency of these ligands. Here, we report the crystal structures of VDR ligand binding domain bound to two vitamin D agonists of therapeutical interest, calcipotriol and seocalcitol, which are characterized by their side chain modifications. These structures show the conservation of the VDR structure and the adaptation of the side chain anchored by hydroxyl moieties. The structure of VDR-calcipotriol helps us to understand the structural basis for for the switching of calcipotriol to a receptor antagonist by further side chain modification. The VDR-seocalcitol structure, in comparison with the structure of VDR-KH1060, a superagonist ligand closely related to seocalcitol, shows adaptation of the D ring and position of C-21 in order to adapt its more rigid side chain.
Collapse
Affiliation(s)
- Giuseppe Tocchini-Valentini
- Département de Biologie et de Génomique Structurales, IGBMC, CNRS/INSERM/Université Louis Pasteur, Parc d'Innovation BP10142, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|