1
|
Kim SJ, Amankwah E, Connors S, Park HY, Rincon M, Cornnell H, Chornokur G, Hashim AI, Choi J, Tsai YY, Engelman RW, Kumar N, Park JY. Safety and chemopreventive effect of Polyphenon E in preventing early and metastatic progression of prostate cancer in TRAMP mice. Cancer Prev Res (Phila) 2014; 7:435-44. [PMID: 24501325 DOI: 10.1158/1940-6207.capr-13-0427-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prostate cancer treatment is often accompanied by untoward side effects. Therefore, chemoprevention to reduce the risk and inhibit the progression of prostate cancer may be an effective approach to reducing disease burden. We investigated the safety and efficacy of Polyphenon E, a green tea extract, in reducing the progression of prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. A total of 119 male TRAMP and 119 C57BL/6J mice were treated orally with one of 3 doses of Polyphenon E (200, 500, and 1,000 mg/kg/day) in drinking water ad libitum replicating human achievable doses. Baseline assessments were performed before treatments. Safety and efficacy assessments during treatments were performed when mice were 12, 22, and 32 weeks old. The number and size of tumors in treated TRAMP mice were significantly decreased compared with untreated animals. In untreated 32 weeks old TRAMP mice, prostate carcinoma metastasis to distant sites was observed in 100% of mice (8/8), compared with 13% of mice (2/16) treated with high-dose Polyphenon E during the same period. Furthermore, Polyphenon E treatment significantly inhibited metastasis in TRAMP mice in a dose-dependent manner (P = 0.0003). Long-term (32 weeks) treatment with Polyphenon E was safe and well tolerated with no evidence of toxicity in C57BL/6J mice. Polyphenon E is an effective chemopreventive agent in preventing the progression of prostate cancer to metastasis in TRAMP mice. Polyphenon E showed no toxicity in these mouse models. Our findings provide additional evidence for the safety and chemopreventive effect of Polyphenon E in preventing metastatic progression of prostate cancer.
Collapse
Affiliation(s)
- Seung Joon Kim
- Department of Cancer Epidemiology, Moffitt Cancer Center, University of South Florida, College of Medicine, 12902 Magnolia Drive, Tampa, FL 33612.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kumar N, Chornokur G. Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2012; Suppl 2:005. [PMID: 24527269 PMCID: PMC3920581 DOI: 10.4172/2161-1025.s2-005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention.
Collapse
Affiliation(s)
- Nagi Kumar
- Department of Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Florida, USA ; University of South Florida College of Medicine, Florida, USA
| | - Ganna Chornokur
- Department of Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Florida, USA
| |
Collapse
|
3
|
Connors SK, Chornokur G, Kumar NB. New insights into the mechanisms of green tea catechins in the chemoprevention of prostate cancer. Nutr Cancer 2011; 64:4-22. [PMID: 22098273 DOI: 10.1080/01635581.2012.630158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer and second most common cause of cancer deaths in American men. Its long latency, slow progression, and high incidence rate make prostate cancer ideal for targeted chemopreventative therapies. Therefore, chemoprevention studies and clinical trials are essential for reducing the burden of prostate cancer on society. Epidemiological studies suggest that tea consumption has protective effects against a variety of human cancers, including that of the prostate. Laboratory and clinical studies have demonstrated that green tea components, specifically the green tea catechin (GTC) epigallocatechin gallate, can induce apoptosis, suppress progression, and inhibit invasion and metastasis of prostate cancer. Multiple mechanisms are involved in the chemoprevention of prostate cancer with GTCs; understanding and refining models of fundamental molecular pathways by which GTCs modulate prostate carcinogenesis is essential to apply the utilization of green tea for the chemoprevention of prostate cancer in clinical settings. The objective of this article is to review and summarize the most current literature focusing on the major mechanisms of GTC chemopreventative action on prostate cancer from laboratory, in vitro, and in vivo studies, and clinical chemoprevention trials.
Collapse
Affiliation(s)
- Shahnjayla K Connors
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
| | | | | |
Collapse
|
4
|
Hu R, Saw CLL, Yu R, Kong ANT. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal 2010; 13:1679-98. [PMID: 20486765 PMCID: PMC2966483 DOI: 10.1089/ars.2010.3276] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer chemoprevention is a process of using either natural or synthetic compounds to reduce the risk of developing cancer. Observations that NF-E2-related factor 2 (Nrf2)-deficient mice lack response to some chemopreventive agents point to the important role of Nrf2 in chemoprevention. Nrf2 is a member of basic-leucine zipper transcription factor family and has been shown to regulate gene expression by binding to a response element, antioxidant responsive element. It is generally believed that activation of Nrf2 signaling is an adaptive response to the environmental and endogenous stresses. Under homeostatic conditions, Nrf2 is suppressed by association with Kelch-like ECH-associated protein 1 (Keap1), but is stimulated upon exposure to oxidative or electrophilic stress. Once activated, Nrf2 translocates into nuclei and upregulates a group of genes that act in concert to combat oxidative stress. Nrf2 is also shown to have protective function against inflammation, a pathological process that could contribute to carcinogenesis. In this review, we will discuss the current progress in the study of Nrf2 signaling, in particular, the mechanisms of Nrf2 activation by chemopreventive agents. We will also discuss some of the potential caveats of Nrf2 in cancer treatment and future opportunity and challenges on regulation of Nrf2-mediated antioxidant and antiinflammatory signaling in the context of cancer prevention.
Collapse
Affiliation(s)
- Rong Hu
- Department of Physiology, China Pharmaceutical University, Nanjing, China.
| | | | | | | |
Collapse
|
5
|
Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3169-79. [PMID: 20971741 PMCID: PMC2993277 DOI: 10.2353/ajpath.2010.100330] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 11/20/2022]
Abstract
The polyphenol epigallocatechin-3-gallate (EGCG) in combination with doxorubicin (Dox) exhibits a synergistic activity in blocking the growth and colony-forming ability of human prostate cell lines in vitro. EGCG has been found to disrupt the mitochondrial membrane potential, induce vesiculation of mitochondria, and induce elevated poly (ADP-ribose) polymerase (PARP) cleavage and apoptosis. EGCG in combination with low levels of Dox had a synergistic effect in blocking tumor cell growth. In vivo tumor modeling studies with a highly metastatic tumor line, PC-3ML cells, revealed that EGCG (228 mg/kg or 200 μmol/L) appeared to sensitize tumors to Dox. EGCG combined with low levels of Dox (0.14 mg/kg or 2 μmol/L) blocked tumor growth by PC-3ML cells injected intraperitoneally (ie, in CB17 severe combined immunodeficiencies) and significantly increased mouse survival rates. Similarly, relatively low levels of EGCG (57 mg/kg or 50 μmol/L) plus Dox (0.07 mg/kg or 1 μmol/L) eradicated established tumors (ie, in nonobese diabetic-severe combined immunodeficiencies) that were derived from CD44(hi) tumor-initiating cells isolated from PCa-20a cells. Flow cytometry results showed that EGCG appeared to enhance retention of Dox by tumor cells to synergistically inhibit tumor growth and eradicate tumors. These data suggest that localized delivery of high dosages of EGCG combined with low levels of Dox may have significant clinical application in the treatment of metastatic prostate and/or eradication of primary tumors derived from tumor-initiating cells.
Collapse
Affiliation(s)
- Mark E Stearns
- Drexel University College of Medicine, Dept. of Pathology, MS 435, 245 N. Broad St., Philadelphia, PA 19102, USA.
| | | | | | | | | |
Collapse
|
6
|
Saarinen NM, Tuominen J, Pylkkänen L, Santti R. Assessment of information to substantiate a health claim on the prevention of prostate cancer by lignans. Nutrients 2010; 2:99-115. [PMID: 22254011 PMCID: PMC3257165 DOI: 10.3390/nu2020099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/25/2010] [Indexed: 12/31/2022] Open
Abstract
Lignans and their in vivo metabolites, especially enterolactone (ENL), have attracted substantial interest as potential chemopreventive agents for prostate cancer. Preclinical and clinical interventions performed with lignan-rich flaxseed that use surrogate biomarkers as endpoints suggest that lignans may attenuate prostate carcinogenesis in individuals with increased risk or with diagnosed cancer. No unequivocal prostate cancer risk reduction has been found for lignans in epidemiological studies, suggesting that lignan concentrations found in populations consuming a regular non-supplemented diet are not chemopreventive in prostate cancer. Presumably, the main obstacles in assessing the efficacy of food lignans is limited knowledge of the serum and tissue lignan concentrations required for the putative prevention. Further clinical studies performed with the purified compounds are required to substantiate a health claim.
Collapse
Affiliation(s)
- Niina M. Saarinen
- Functional Foods Forum, University of Turku, Turku, 20014, Finland
- Author to whom correspondence should be addressed: ; Fax: +358 2 333 6862
| | - Juhani Tuominen
- Department of Statistics, University of Turku, Turku, 20014, Finland;
| | - Liisa Pylkkänen
- Department of Oncology, University of Turku, Turku, 20014, Finland
- Medical School, University of Tampere, Tampere, 33014, Finland;
| | - Risto Santti
- Institute of Biomedicine, University of Turku, Turku, 20014, Finland;
| |
Collapse
|
7
|
Qian DZ, Wei YF, Wang X, Kato Y, Cheng L, Pili R. Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate 2007; 67:1182-93. [PMID: 17520666 DOI: 10.1002/pros.20611] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors represent a novel class of therapeutic agents with antitumor activity currently in clinical development. In this study, we tested the biological effects of the HDAC inhibitor MS-275 in various pre-clinical prostate cancer models both in'vitro and in vivo. METHODS In vitro cell proliferation XTT assay and protein expression analysis by Western blot were performed. In vivo tumor growth assessment in subcutaneous, orthotopic, and transgenic mouse models were conducted. RESULTS MS-275 significantly upregulated histone H3 acetylation and p21 gene expression in human prostate cancer cell lines. MS-275 exerted growth arrest in PC-3 and LNCaP cells, and induced cell death in DU-145 cells. Prostate specific antigen protein levels were increased by MS-275 in LAPC4 cell line. In vivo, MS-275 inhibited the growth of DU-145, LNCaP, and PC-3 in subcutaneous xenografts. MS-275 had also a significant inhibition of PC-3 cells growth in a mouse intratibial model. Molecular analysis showed increased histone acetylation and p21 expression in tumor samples from MS-275-treated mice. In transgenic adenocarcinoma of mouse prostate (TRAMP) mice, long-term treatment of MS-275 slowed the progression of prostate carcinomas with significant reduction in cell proliferation. CONCLUSIONS Taken together, these data support the clinical testing of MS-275 for the treatment of prostate cancer.
Collapse
Affiliation(s)
- David Z Qian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
8
|
Papatsoris AG, Liolitsa D, Deliveliotis C. Manipulation of the nerve growth factor network in prostate cancer. Expert Opin Investig Drugs 2007; 16:303-9. [PMID: 17302525 DOI: 10.1517/13543784.16.3.303] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autocrine and paracrine events regulated by nerve growth factor (NGF) and relevant receptors (low- and high affinity; p75 neurotrophin receptor [p75(NTR)] and TrkA, respectively) seem to play a significant role in prostate carcinogenesis. Studies reveal that p75(NTR) is both a tumor suppressor of growth and a metastasis suppressor of human prostate cancer cells. Furthermore, p75(NTR) is progressively lost during prostate carcinogenesis. An imbalance between p75(NTR) and tropomyosin receptor kinase A (TrkA)-mediated signals may be involved in the progression of prostate cancer through increased proliferation and reduced apoptosis. The antiproliferative and apoptotic effects of GnRH analogs in prostate cancer cells may be mediated by altering the TrkA:p75(NTR) NGF receptor ratio. Administration of NGF induces a reversion of the androgen-independent/androgen receptor-negative prostate cancer cell lines to a less malignant phenotype. Finally, Trk inhibition is a novel, attractive and rational approach for prostate cancer therapy. This review unravels the NGF 'circuitry' in prostate cancinogenesis for relevant pharmacologic manipulation to lead to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Athanasios G Papatsoris
- 2nd Department of Urology, University of Athens, School of Medicine, Sismanoglio General Hospital, Athens, Greece.
| | | | | |
Collapse
|
9
|
Floyd RA, Kotake Y, Towner RA, Guo WX, Nakae D, Konishi Y. Nitric Oxide and Cancer Development. J Toxicol Pathol 2007. [DOI: 10.1293/tox.20.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Robert A. Floyd
- Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center
| | | | | | | | - Dai Nakae
- Tokyo Metropolitan Institute of Public Health
- Tokyo University of Agriculture
| | - Yoichi Konishi
- International Federation of Societies of Toxicologic Pathologists
| |
Collapse
|
10
|
Rayburn ER, Wang W, Zhang Z, Li M, Zhang R, Wang H. Experimental therapy of prostate cancer with an immunomodulatory oligonucleotide: effects on tumor growth, apoptosis, proliferation, and potentiation of chemotherapy. Prostate 2006; 66:1653-63. [PMID: 16927305 DOI: 10.1002/pros.20485] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The present study was designed to demonstrate the therapeutic efficacy of a novel immunomodulatory oligonucleotide (IMO) for prostate cancer. METHODS We evaluated the effects of the IMO in xenograft (PC-3) and syngeneic (TRAMP C1) models of prostate cancer, and in prostate cancer cells. The IMO was also evaluated in combination with chemotherapy, and the in vitro expression of TLR9 was examined. RESULTS The IMO had significant anti-tumor activity in both prostate cancer models and almost complete tumor regression was observed when the IMO was combined with taxotere or gemcitabine. TLR9 mRNA and protein were both expressed in prostate cancer cells. The IMO also induced apoptosis and decreased proliferation and survival of PC-3 cells in vitro in the presence of Lipofectin. CONCLUSIONS The IMO inhibits prostate cancer growth in vivo and in vitro, and potentiates the effects of conventional chemotherapeutic agents. This is the first report of TLR9 expression in prostate cancer cells.
Collapse
Affiliation(s)
- Elizabeth R Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
11
|
Fujimoto N, Nomura M, Matsumoto T. Tumour plasticity and extravascular circulation in ECV304 human bladder carcinoma cells. Expert Rev Anticancer Ther 2006; 6:59-71. [PMID: 16375645 DOI: 10.1586/14737140.6.1.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The concepts of vasculogenic mimicry and mosaic vessels have been proposed as novel modes of tumour neovascularisation. However, the presence and significance of these types of neovascularisation remain unclear. MATERIALS AND METHODS ECV304 human bladder carcinoma cells were used to determine how tumour cells take part in tumour neovascularisation. RESULTS Subcutaneous ECV304 xenografts in mice showed various vessel types, including angiogenic vessels, tumour cell-related vessels and extracellular matrix networks. A tracer experiment demonstrated perfusion of beads in these structures. ECV304 cells, cultured on collagen I gels, formed tube networks with expressions of several endothelial-related markers. In coculture models of ECV304 cells and human umbilical vein endothelial cells, the two cells collaborated to form sprouts or networks. CONCLUSION ECV304 cells possess an endothelial character which confers the ability to mimic and collaborate with vascular endothelial cells and facilitates the acquisition of tumour microcirculation.
Collapse
Affiliation(s)
- Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka Yahatanishi Kitakyushu, 807-8555, Japan.
| | | | | |
Collapse
|