1
|
Uddin S, Hussain AR, Ahmed M, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Bavi P, Al-Kuraya KS. Coexpression of activated c-Met and death receptor 5 predicts better survival in colorectal carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3032-44. [PMID: 21978492 DOI: 10.1016/j.ajpath.2011.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 08/03/2011] [Accepted: 08/09/2011] [Indexed: 02/04/2023]
Abstract
Dysregulated overexpression of hepatocyte growth factor and its receptor, c-Met, has been reported in various cancers, but its role in colorectal carcinoma (CRC) has not been elucidated. Therefore, we investigated the role of phosphorylated Met (p-Met) in Middle Eastern CRC patient samples and cell lines. The p-Met was overexpressed in 80.8% of CRCs and strongly associated with the expression of p-AKT, DR5, and Ki-67 by immunohistochemistry. Coexpression of p-Met and DR5 was seen in 53.1% of CRC cases and was associated with a less aggressive phenotype, characterized by a histological subtype of adenocarcinomas, well-differentiated tumors, and was an independent prognostic marker for better overall survival. PHA665752, a selective p-Met inhibitor, induced apoptosis in CRC cells via inactivation of c-Met and AKT. PHA665752 treatment also caused increased expression of DR5 via generation of reactive oxygen species, and combination treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and PHA665752 induced significant apoptosis. In vivo, cotreatment of a CRC xenograft with PHA665752 and TRAIL significantly reduced tumor volume and weight. These data demonstrate a significant correlation between p-Met and DR5 in patients with CRC. Furthermore, inhibition of p-Met signaling by PHA665752 in combination with TRAIL significantly inhibited cell growth and induced apoptosis in CRC cell lines, suggesting that this may have significant clinical implications as a therapeutic target in the treatment of CRC.
Collapse
Affiliation(s)
- Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bavi P, Uddin S, Ahmed M, Jehan Z, Bu R, Abubaker J, Sultana M, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Prabhakaran S, Hussain AR, Al-Kuraya KS. Bortezomib stabilizes mitotic cyclins and prevents cell cycle progression via inhibition of UBE2C in colorectal carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2109-20. [PMID: 21514426 DOI: 10.1016/j.ajpath.2011.01.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/06/2011] [Accepted: 01/25/2011] [Indexed: 12/12/2022]
Abstract
Substantial evidence implicates the ubiquitin-conjugating enzyme E2C (UBE2C) gene, in several human cancers, including colorectal carcinoma (CRC). We therefore investigated the prognostic value of UBE2C alterations in CRC and UBE2C signaling in CRC cell lines. UBE2C protein expression and UBE2C gene copy number were evaluated on clinical samples by immunohistochemistry and fluorescence in situ hybridization in a TMA format. The effect of the proteasome inhibitor bortezomib and small-interfering RNA knockdown was assessed by apoptotic assays and immunoblotting. UBE2C dysregulation was associated with proliferative marker Ki-67, accumulation of cyclin A and B1, and a poor overall survival. UBE2C expression was an independent prognostic marker in early-stage (I and II) CRC. UBE2C depletion resulted in suppression of cellular growth and accumulation of cyclin A and B1. In vitro, bortezomib treatment of CRC cells caused inhibition of cell viability via down-regulation of UBE2C. UBE2C knockdown by bortezomib or transfection with specific small-interfering RNA against UBE2C also caused cells to be arrested at the G2/M level, leading to accumulation of cyclin A and cyclin B1. In vivo, a significant reduction in tumor volume and weight was noted in mice treated with a combination of subtoxic doses of oxaliplatin and bortezomib compared with treatment with oxaliplatin or bortezomib alone. Altogether, our results suggest that UBE2C and the ubiquitin-proteasome pathway may be potential targets for therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Prashant Bavi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway. Biochem Biophys Res Commun 2011; 411:751-6. [PMID: 21782788 DOI: 10.1016/j.bbrc.2011.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/03/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. METHODS In this study, using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. RESULTS Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. CONCLUSION Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.
Collapse
|
4
|
Uddin S, Ahmed M, Hussain A, Abubaker J, Al-Sanea N, AbdulJabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Jehan Z, Bavi P, Siraj AK, Al-Kuraya KS. Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:537-47. [PMID: 21281787 DOI: 10.1016/j.ajpath.2010.10.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/25/2010] [Accepted: 10/04/2010] [Indexed: 12/19/2022]
Abstract
To identify genes potentially playing an important role in the progression of colorectal carcinoma (CRC), we screened global gene expression using cDNA expression array on 41 CRC tissue samples and 25 noncancerous colorectal tissue samples. Among the up-regulated genes, forkhead box M1 (FOXM1) has been shown to play a critical role in pathogenesis of various malignancies. Using immunohistochemistry on 448 Saudi CRC samples in tissue microarray format, FoxM1 protein overexpression was seen in 66% of CRC tissues and was significantly associated with poorly differentiated and highly proliferative tumors (P = 0.0200 and 0.0018, respectively). FoxM1 expression was also significantly associated with MMP-9 protein expression (P = 0.0002). In vitro data using CRC cell lines showed that inhibition of FoxM1 by thiostrepton resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner. Overexpression of FoxM1 potentiated cell proliferation, cell transformation, and migration/invasion of CRC cells via up-regulation of FoxM1 target genes MMP2 and MMP9 and protected these cells from thiostrepton-mediated antiproliferative effects. Finally, in vivo, overexpression of FoxM1 promoted growth of CRC-cell line xenograft tumors in nude mice. Altogether, our data indicate that FoxM1 signaling contributes to aggressiveness in a subset of CRC and that the FOXM1 gene may serve as a useful molecular biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cao D, Hou M, Guan YS, Jiang M, Yang Y, Gou HF. Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer 2009; 9:432. [PMID: 20003271 PMCID: PMC2797529 DOI: 10.1186/1471-2407-9-432] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/10/2009] [Indexed: 02/05/2023] Open
Abstract
Background Hypoxia-inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) are frequently overexpressed in numerous types of cancers and are known to be important regulators of angiogenesis. Until now, few studies have been carried out to investigate the prognostic role of these factors in solid tumors, especially in colorectal cancer (CRC). The purpose of this study was to evaluate the expression of HIF-1α and VEGF in CRC tissues, and to analyze the association of these two factors with several clinical and pathological characteristics, and patients' survival. Methods Paraffin-embedded tissue samples were retrospectively collected from 71 CRC patients, who received surgical resection between 2001 and 2002, with a median follow-up of 5 years. We examined the patterns of expression of HIF-1α and VEGF by immunohistochemistry method. Statistical analysis was performed with univariate tests and multivariate Cox proportional hazards model to evaluate the differences. Results Expression of HIF-1α and VEGF was positively observed in 54.93% and 56.34% among the patients, respectively. HIF-1α and VEGF status were significantly associated with tumor stage, lymph nodes and liver metastases (P < 0.05). Expression of both HIF-1α and VEGF remained significantly associated with overall survival (OS) (P < 0.01), and HIF-1α was positively correlative to VEGF in CRC (r = 0.72, P < 0.001). Conclusions HIF-1α and VEGF could be used as biomarkers indicating tumors in advanced stage and independently implied poor prognosis in patients with CRC. Treatment that inhibits HIF-1α might be a promising targeted approach in CRC to exhibit its potential to improve outcomes in future perspective, just as VEGF targeting has proved to be.
Collapse
Affiliation(s)
- Dan Cao
- Department of Medical Oncology, Cancer Center of West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, Department of Colorectal Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia,Address for correspondence: Department of Cancer Genomic Research, King Fahad National Center for Children's Cancer and Research, King Faisal Specialist Hospital and Research Cancer, MBC#98-16, P.O. Box 3354, Riyadh 11211, Saudi Arabia. E-mail:
| |
Collapse
|
7
|
High prevalence of fatty acid synthase expression in colorectal cancers in Middle Eastern patients and its potential role as a therapeutic target. Am J Gastroenterol 2009; 104:1790-801. [PMID: 19491830 DOI: 10.1038/ajg.2009.230] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Many human epithelial cancers, particularly those with a poor prognosis, express high levels of fatty acid synthase (FASN), a key metabolic enzyme linked to synthesis of membrane phospholipids in cancer cells. Overexpression of FASN is linked with activation of the phosphatidylinositol-3'-kinase (PI3 K)/AKT pathway. However, the role of FASN in colorectal cancer (CRC) has not been fully elucidated. We investigated the expression of FASN and determined its functional association with the PI3/AKT pathway in CRC. METHODS Expression of FASN and its associated targets were studied by immunohistochemistry on 448 CRC tumors in a tissue microarray (TMA) format. Analysis of apoptosis and cell cycle was evaluated in vitro using CRC cell lines by flow cytometry and DNA fragmentation assays. Protein expression was determined by immunohistochemistry and western blotting. In vivo xenograft studies were performed using CRC cell lines and NUDE mice. RESULTS Correlation of FASN with various clinicopathological parameters on 448 CRC samples was assessed. Activated AKT was found in 294/409 (71.9%) of CRC and was associated with FASN overexpression. FASN expression was observed in 27.1% (109/403) of Middle Eastern CRC. Additionally, FASN expression was significantly more common in tumors characterized by microsatellite instability (MSI) than in those characterized by microsatellite stability (MSS) (P<0.01). Our in vitro data using HCT-15, an MSI CRC cell line, showed a better apoptotic response after inhibition of FASN activity as compared with Colo-320, an MSS CRC cell line. Finally, treatment of HCT-15 cell line xenografts with C-75 resulted in growth inhibition of tumors in NUDE mice via downregulation of FASN and AKT activity. CONCLUSIONS These data identify FASN as a potential biomarker and a novel therapeutic target in distinct molecular subtypes of CRC.
Collapse
|
8
|
Uddin S, Ahmed M, Bavi P, El-Sayed R, Al-Sanea N, AbdulJabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Hussain AR, Al-Kuraya KS. Bortezomib (Velcade) induces p27Kip1 expression through S-phase kinase protein 2 degradation in colorectal cancer. Cancer Res 2008; 68:3379-88. [PMID: 18451165 DOI: 10.1158/0008-5472.can-07-6109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S-phase kinase protein 2 (SKP2), an F-box protein, targets cell cycle regulators including cycle-dependent kinase inhibitor p27Kip1 via ubiquitin-mediated degradation. SKP2 is frequently overexpressed in a variety of cancers. We investigated the role of SKP2 and its ubiquitin-proteasome pathway in colorectal carcinoma using a panel of cell lines, clinical samples, and the NUDE mouse model. Using immunohistochemical analysis on a large tissue microarray of 448 samples, an inverse association of SKP2 expression with p27Kip1 protein levels was seen. A colorectal cancer (CRC) subset with high level of SKP2 and low level of p27Kip1 showed a decreased overall survival (P = 0.0057). Treatment of CRC cell lines with bortezomib or expression of small interfering RNA of SKP2 causes down-regulation of SKP2 and accumulation of p27Kip1. Furthermore, treatment of CRC cells with bortezomib causes apoptosis by involving the mitochondrial pathway and activation of caspases. In addition, treatment of CRC cells with bortezomib down-regulated the expression of XIAP, cIAP1, and survivin. Finally, treatment of CRC cell line xenografts with bortezomib resulted in growth inhibition of tumors in NUDE mice via down-regulation of SKP2 and accumulation of p27Kip1. Altogether, our results suggest that SKP2 and the ubiquitin-proteasome pathway may be potential targets for therapeutic intervention for treatment of CRC.
Collapse
Affiliation(s)
- Shahab Uddin
- Department of Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen J, Smith M, Kolinsky K, Adames V, Mehta N, Fritzky L, Rashed M, Wheeldon E, Linn M, Higgins B. Antitumor activity of HER1/EGFR tyrosine kinase inhibitor erlotinib, alone and in combination with CPT-11 (irinotecan) in human colorectal cancer xenograft models. Cancer Chemother Pharmacol 2006; 59:651-9. [PMID: 16937104 DOI: 10.1007/s00280-006-0320-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 07/18/2006] [Indexed: 01/21/2023]
Abstract
Erlotinib (Tarceva, OSI-774) is a potent, orally available, small-molecule inhibitor of HER1/EGFR tyrosine-kinase activity. In this study, the antitumor activity of erlotinib was evaluated in two human colorectal tumor xenograft models (LoVo and HCT116) in athymic mice. When erlotinib was administered as monotherapy, significant tumor growth inhibition (TGI) was seen in the LoVo model at both 100 mg/kg [TGI > 100%, P < 0.001; 6/10 partial regressions (PRs)] and 25 mg/kg (TGI = 79%, P < 0.001) doses. However, the HCT116 xenograft model was not responsive to any dose of erlotinib tested. The differential response to erlotinib of these two tumor models was not a result of differences in HER1/EGFR expression levels since these were similar in both cell lines. However, it was demonstrated that resistance to erlotinib in the HCT116 model may be a result of persistent activation of ERK in these tumors. Based on the single agent activity of erlotinib in LoVo tumors, a combination study with CPT-11 (Camptosar, irinotecan) was performed. CPT-11 at the optimal dose of 60 mg/kg or a lower dose of 15 mg/kg resulted in significant TGI (TGI > 100%, P < 0.001, and TGI = 93%, P < 0.001, respectively) in LoVo-bearing mice. Combination treatment with erlotinib (25 mg/kg) and CPT-11 (15 mg/kg) produced significantly greater antitumor activity (TGI > 100%, P < 0.001; 10/10 PRs) than either agent alone (P < 0.05), with no increase in toxicity. These data indicate that erlotinib can enhance the antitumor activity of CPT-11, without enhanced toxicity, in the LoVo human colorectal tumor xenograft model.
Collapse
Affiliation(s)
- Jianping Chen
- Department of Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Khamly K, Jefford M, Michael M, Zalcberg J. Recent developments in the systemic therapy of advanced gastroesophageal malignancies. Expert Opin Investig Drugs 2006; 15:131-53. [PMID: 16433593 DOI: 10.1517/13543784.15.2.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancers of the upper gastrointestinal tract are a common cause of worldwide morbidity and mortality. The prognosis for patients with these cancers remains poor and only a minority of patients are cured. Systemic therapy has been used to treat patients with advanced disease but outcomes have not improved dramatically in the past few decades. Newer, more effective agents are desperately needed, and agents such as the taxanes (docetaxel and paclitaxel), irinotecan, oxaliplatin and capecitabine have recently shown some promise. In addition, molecularly targeted, non-cytotoxic therapies are being evaluated with the hope of improving the available therapeutic options. This article reviews the current clinical data regarding systemic therapy for patients with advanced upper gastrointestinal malignancies.
Collapse
Affiliation(s)
- Kenneth Khamly
- Division of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Victoria 8006, Australia
| | | | | | | |
Collapse
|
11
|
Etienne-Grimaldi MC, Cayre A, Penault-Llorca F, Francoual M, Formento JL, Benchimol D, Bourgeon A, Milano G. EGFR expression in colon cancer: a break in the clouds. Ann Oncol 2006; 17:1850-1. [PMID: 16766589 DOI: 10.1093/annonc/mdl138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Martinelli E, Troiani T, Morgillo F, Piccirillo MC, Monaco K, Morelli MP, Cascone T, Ciardiello F. Combination of epidermal growth factor receptor inhibitors and antiangiogenic drugs: a model for treatment. Target Oncol 2006. [DOI: 10.1007/s11523-006-0022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Francoual M, Etienne-Grimaldi MC, Formento JL, Benchimol D, Bourgeon A, Chazal M, Letoublon C, André T, Gilly N, Delpero JR, Lasser P, Spano JP, Milano G. EGFR in colorectal cancer: more than a simple receptor. Ann Oncol 2006; 17:962-7. [PMID: 16524971 DOI: 10.1093/annonc/mdl037] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Advances in the understanding of tumor biology have led to the development of targeted therapies allowing progress in colorectal cancer treatment. One of the most promising targets is the epidermal growth factor receptor (EGFR). METHOD The presence and distribution of high- and low-affinity EGFR was investigated retrospectively in a group of 82 colorectal cancer samples (43 normal colon-colon cancer paired samples) using a specific ligand binding assay (Scatchard Analysis). FINDINGS A large majority of tumor samples exhibited one class of high-affinity binding sites (78%). Eighteen cases (22%) exhibited both high- and low-affinity binding sites. A wide interpatient variability was observed for the site number, with physiologically-relevant high-affinity sites ranging from 7 to 310 fmol/mg protein in tumors and from 6 to 313 fmol/mg protein in normal mucosa. A significant positive correlation was demonstrated between tumor and normal mucosa for the high-affinity Kd values and for the number of high-affinity sites, suggesting a common regulation for both tumor and normal tissue. INTERPRETATION These observations (i) could explain recently-reported clinically-active EGFR targeting in colorectal tumors apparently negative for EGFR, and (ii) may offer a plausible explanation for the link observed between toxicity in normal tissue (cutaneous rash) and clinical outcome of patients treated with anti-EGFR drugs. Present data extends our understanding of EGFR identity in colorectal cancer which could be useful in reconsidering the predictive tools for the identification of tumors putatively responsive to EGFR targeted therapy.
Collapse
|
14
|
Wu G, Barth RF, Yang W, Kawabata S, Zhang L, Green-Church K. Targeted delivery of methotrexate to epidermal growth factor receptor–positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 2006; 5:52-9. [PMID: 16432162 DOI: 10.1158/1535-7163.mct-05-0325] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have constructed a drug delivery vehicle that targets the epidermal growth factor receptor (EGFR) and its mutant isoform EGFRvIII. The monoclonal antibody, cetuximab, previously known as C225, which binds to both EGFR and EGFRvIII, was covalently linked via its Fc region to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. As measured by mass spectrometry and UV/vis spectroscopy, the resulting bioconjugate, designated C225-G5-MTX, contained 12.6 molecules of methotrexate per unit of dendrimer. Specific binding and cytotoxicity of the bioconjugate was evaluated against the EGFR-expressing rat glioma cell line F98(EGFR). Using a competitive binding assay, it was shown that the bioconjugate retained its affinity for F98(EGFR) cells, with a 0.8 log unit reduction in its EC(50). Only cetuximab completely inhibited binding of the bioconjugate, which was unaffected by methotrexate or dendrimer. Cetuximab alone was not cytotoxic to F98(EGFR) cells at the concentration tested, whereas the IC(50) of the bioconjugate was 220 nmol/L, which was a 2.7 log unit decrease in toxicity over that of free methotrexate. The biodistribution of C225-G5-MTX in rats bearing i.c. implants of either F98(EGFR) or F98(WT) gliomas was determined 24 hours following convection enhanced delivery of (125)I-labeled bioconjugate. At this time, 62.9 +/- 14.7% ID/g tumor was localized in rats bearing F98(EGFR) gliomas versus 11.3 +/- 3.6% ID/g tumor in animals bearing F98(WT) gliomas, thereby showing specific molecular targeting of the tumor. The corresponding radioactivity of normal brain from the F98(EGFR) tumor-bearing right and non-tumor-bearing left cerebral hemisphere were 5.8 +/- 3.4% and 0.8 +/- 0.6% ID/g, respectively. Based on these results, therapy studies were initiated in F98(EGFR) glioma-bearing rats. Animals that received C225-G5-MTX, cetuximab, or free methotrexate had median survival times of 15, 17, and 19.5 days, respectively, which were not statistically different from each other or untreated control animals. Our results, which are both positive and negative, show that specific molecular targeting is but one of several requirements that must be fulfilled if an antibody-drug bioconjugate will be therapeutically useful.
Collapse
Affiliation(s)
- Gong Wu
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Norman Wolmark
- National Surgical Adjuvant Breast and Bowel Project, 4 Allegheny Center, Pittsburgh, PA 15212, USA.
| |
Collapse
|
16
|
Morgillo F, Lee HY. Resistance to epidermal growth factor receptor-targeted therapy. Drug Resist Updat 2005; 8:298-310. [PMID: 16172017 DOI: 10.1016/j.drup.2005.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
The epidermal growth factor receptor (EGFR) has been a major target of molecular anticancer therapy. Two approaches have been developed, involving monoclonal antibodies and receptor tyrosine kinase inhibitors, and both have demonstrated benefit in clinical trials. However, evidence of resistance to these drugs has been described. Cellular levels of EGFR do not always correlate with response to the EGFR tyrosine kinase inhibitors, indicating acquired resistance to these drugs. Since EGFR antagonists interfere with the activation of several intracellular pathways that control cell proliferation, survival, apoptosis, angiogenesis, invasion and metastasis, acquired resistance can occur as a result of several different molecular mechanisms: autocrine/paracrine production of ligand, receptor mutation, constitutive activation of the downstream pathway and activation of alternative pathways. We will describe here potential mechanisms that can cause resistance to EGFR-targeted drugs. Combinations of EGFR antagonists with inhibitors targeting different signaling mechanism(s) - such as insulin-like growth factor receptor and vascular endothelial growth factor receptor - that share the same downstream mediator (e.g., phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase), may circumvent or delay the development of resistance to EGFR antagonists resulting in enhanced antitumor activities.
Collapse
Affiliation(s)
- Floriana Morgillo
- Department of Thoracic/Head and Neck Medical Oncology, Unit 432, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|