1
|
Scarini JF, Lavareze L, Lima-Souza RAD, Emerick C, Gonçalves MT, Figueiredo-Maciel T, Vieira GDS, Kimura TDC, de Sá RS, Aquino IG, Fernandes PM, Kowalski LP, Altemani A, Mariano FV, Egal ESA. Head and neck squamous cell carcinoma: Exploring frontiers of combinatorial approaches with tyrosine kinase inhibitors and immune checkpoint therapy. Crit Rev Oncol Hematol 2022; 180:103863. [DOI: 10.1016/j.critrevonc.2022.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
2
|
Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, Young S, Sandulache V, Melville J, Shum J, O'Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D'Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun 2022; 13:4829. [PMID: 35977936 PMCID: PMC9385702 DOI: 10.1038/s41467-022-31859-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Despite therapeutic advancements, oral cavity squamous cell carcinoma (OCSCC) remains a difficult disease to treat. Systemic platinum-based chemotherapy often leads to dose-limiting toxicity (DLT), affecting quality of life. PRV111 is a nanotechnology-based system for local delivery of cisplatin loaded chitosan particles, that penetrate tumor tissue and lymphatic channels while avoiding systemic circulation and toxicity. Here we evaluate PRV111 using animal models of oral cancer, followed by a clinical trial in patients with OCSCC. In vivo, PRV111 results in elevated cisplatin retention in tumors and negligible systemic levels, compared to the intravenous, intraperitoneal or intratumoral delivery. Furthermore, PRV111 produces robust anti-tumor responses in subcutaneous and orthotopic cancer models and results in complete regression of carcinogen-induced premalignant lesions. In a phase 1/2, open-label, single-arm trial (NCT03502148), primary endpoints of efficacy (≥30% tumor volume reduction) and safety (incidence of DLTs) of neoadjuvant PRV111 were reached, with 69% tumor reduction in ~7 days and over 87% response rate. Secondary endpoints (cisplatin biodistribution, loco-regional control, and technical success) were achieved. No DLTs or drug-related serious adverse events were reported. No locoregional recurrences were evident in 6 months. Integration of PRV111 with current standard of care may improve health outcomes and survival of patients with OCSCC.
Collapse
Affiliation(s)
- Manijeh Goldberg
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
- Privo Technologies, Peabody, MA, USA.
| | - Aaron Manzi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
- Privo Technologies, Peabody, MA, USA
| | | | | | | | | | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | - Rifat Hasina
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gary L Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simon Young
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vlad Sandulache
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James Melville
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sonya E O'Neill
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Erkin Aydin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anxo Vidal
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Atenea Soto
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Maria Jose Alonso
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Anil D'Cruz
- Department of Oncology, Apollo Hospital, Mumbai, India
| | - Nishant Agrawal
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA.
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Kanazawa T, Misawa K, Shinmura K, Misawa Y, Kusaka G, Maruta M, Sasaki T, Watanabe Y, Carey TE. Promoter methylation of galanin receptors as epigenetic biomarkers for head and neck squamous cell carcinomas. Expert Rev Mol Diagn 2019; 19:137-148. [PMID: 30640567 DOI: 10.1080/14737159.2019.1567334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION While remarkable progress has been made in standard treatments for head and neck squamous cell carcinomas (HNSCCs), the long-term survival remains at an unsatisfactory 40-50%. To improve the survival rate, biomarkers for optimal treatment selection and prognostic prediction, as well as novel, low-toxicity treatment strategies, are required. Galanin receptor (GALR) 1 and GALR2 are well-studied tumor suppressors in HNSCCs. Compared with other clinicopathological factors, the epigenetic variants of GALRs have been found to be the most powerful markers to predict the prognosis of HNSCC patients. Areas covered: This review outlines the functions and signaling pathways of GALRs and explains the potential of GALR promoter methylation as a biomarker for HNSCC prognosis. We also summarize recent developments in promoter methylation studies in HNSCC and indicate future directions for GALR promoter methylation studies. Expert commentary: GALR studies have highlighted two major aspects with implications in HNSCC - that G-protein coupled receptors (GPCRs) act as tumor suppressor genes and that GALR promoter methylation is significantly related to the carcinogenesis of HNSCC. The findings of GALR studies can be applied to studies on other GPCRs and further in-depth DNA methylation studies. Deeper insights into GPCR epigenetics are expected to markedly improve HNSCC treatment.
Collapse
Affiliation(s)
- Takeharu Kanazawa
- a Department of Otolaryngology-Head and Neck Surgery , International University of Health and Welfare , Tokyo , Japan.,b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Kiyoshi Misawa
- c Department of Otolaryngology/Head and Neck Surgery , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Kazuya Shinmura
- d Department of Tumor Pathology , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Yuki Misawa
- c Department of Otolaryngology/Head and Neck Surgery , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Gen Kusaka
- e Department of Neurosurgery , Jichi Medical University Saitama Medical Center , Saitama , Saitama , Japan
| | - Mikiko Maruta
- b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Toru Sasaki
- b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Yusuke Watanabe
- a Department of Otolaryngology-Head and Neck Surgery , International University of Health and Welfare , Tokyo , Japan
| | - Thomas E Carey
- f Laboratory of Head and Neck Center Biology, Department of Otolaryngology, Head and Neck Surgery , The University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
4
|
Yang B, Liu T, Qu Y, Liu H, Zheng SG, Cheng B, Sun J. Progresses and Perspectives of Anti-PD-1/PD-L1 Antibody Therapy in Head and Neck Cancers. Front Oncol 2018; 8:563. [PMID: 30547012 PMCID: PMC6279860 DOI: 10.3389/fonc.2018.00563] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer is the 6th most common malignancy worldwide and urgently requires novel therapy methods to change the situation of low 5-years survival rate and poor prognosis. Targeted therapy provides more precision, higher efficiency while lower adverse effects than traditional treatments like surgery, radiotherapy, and chemotherapy. Blockade of PD-1 pathway with antibodies against PD-1 or PD-L1 is such a typical targeted therapy which reconstitutes anti-tumor activity of T cell in treatments of cancers, especially those highly expressing PD-L1, including head and neck cancers. There are many clinical trials all over the world and FDA has approved anti-PD-1/PD-L1 drugs for head and neck cancers. However, with the time going, the dark side of this therapy has emerged, including some serious side effects and drug resistance. Novel materials like nanoparticles and combination therapy have been developed to improve the efficacy. At the same time, standards for evaluation of activity and safety are to be established for this new therapy. Here we provide a systematic review with comprehensive depth on the application of anti-PD1/PD-L1 antibodies in head and neck cancer treatment: mechanism, drugs, clinical studies, influencing factors, adverse effects and managements, and the potential future developments.
Collapse
Affiliation(s)
- Bo Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tingjun Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yang Qu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hangbo Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Bin Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|
6
|
Jaime-Ramirez AC, Yu JG, Caserta E, Yoo JY, Zhang J, Lee TJ, Hofmeister C, Lee JH, Kumar B, Pan Q, Kumar P, Baiocchi R, Teknos T, Pichiorri F, Kaur B, Old M. Reolysin and Histone Deacetylase Inhibition in the Treatment of Head and Neck Squamous Cell Carcinoma. Mol Ther Oncolytics 2017; 5:87-96. [PMID: 28812060 PMCID: PMC5440762 DOI: 10.1016/j.omto.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/03/2017] [Indexed: 02/09/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as powerful anti-cancer agents and are currently being tested for their safety and efficacy in patients. Reovirus (Reolysin), a naturally occurring non-pathogenic, double-stranded RNA virus, has natural oncolytic activity and is being tested in phase I-III clinical trials in a variety of tumor types. With its recent US Food and Drug Administration (FDA) orphan drug designation for several tumor types, Reolysin is a potential therapeutic agent for various cancers, including head and neck squamous cell carcinomas (HNSCCs), which have a 5-year survival of ∼55%. Histone deacetylase inhibitors (HDACis) comprise a structurally diverse class of compounds with targeted anti-cancer effects. The first FDA-approved HDACi, vorinostat (suberoylanilide hydroxamic acid [SAHA]), is currently being tested in patients with head and neck cancer. Recent findings indicate that HDAC inhibition in myeloma cells results in the upregulation of the Reolysin entry receptor, junctional adhesion molecule 1 (JAM-1), facilitating reovirus infection and tumor cell killing both in vitro and in vivo. In this study, we tested the anti-tumor efficacy of HDAC inhibitors AR-42 or SAHA in conjunction with Reolysin in HNSCCs. While HDAC inhibition increased JAM-1 and reovirus entry, the impact of this combination therapy was tested on the development of anti-tumor immune responses.
Collapse
Affiliation(s)
| | - Jun-Ge Yu
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Enrico Caserta
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ji Young Yoo
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianying Zhang
- Biomedical Informatics Department, Center for Biostatistics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tae Jin Lee
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Craig Hofmeister
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John H. Lee
- Department of Otolaryngology/Head and Neck Surgery, Sanford Health, Sioux Falls, SD 57105, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Baiocchi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Theodoros Teknos
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Flavia Pichiorri
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Balveen Kaur
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Old
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Meyer K, Krueger SA, Kane JL, Wilson TG, Hanna A, Dabjan M, Hege KM, Wilson GD, Grills I, Marples B. Pulsed Radiation Therapy With Concurrent Cisplatin Results in Superior Tumor Growth Delay in a Head and Neck Squamous Cell Carcinoma Murine Model. Int J Radiat Oncol Biol Phys 2016; 96:161-9. [PMID: 27511853 DOI: 10.1016/j.ijrobp.2016.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/13/2016] [Accepted: 04/30/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE To assess the efficacy of 3-week schedules of low-dose pulsed radiation treatment (PRT) and standard radiation therapy (SRT), with concurrent cisplatin (CDDP) in a head and neck squamous cell carcinoma xenograft model. METHODS AND MATERIALS Subcutaneous UT-SCC-14 tumors were established in athymic NIH III HO female mice. A total of 30 Gy was administered as 2 Gy/d, 5 d/wk for 3 weeks, either by PRT (10 × 0.2 Gy/d, with a 3-minute break between each 0.2-Gy dose) or SRT (2 Gy/d, uninterrupted delivery) in combination with concurrent 2 mg/kg CDDP 3 times per week in the final 2 weeks of radiation therapy. Treatment-induced growth delays were defined from twice-weekly tumor volume measurements. Tumor hypoxia was assessed by (18)F-fluoromisonidazole positron emission tomography imaging, and calculated maximum standardized uptake values compared with tumor histology. Tumor vessel density and hypoxia were measured by quantitative immunohistochemistry. Normal tissues effects were evaluated in gut and skin. RESULTS Untreated tumors grew to 1000 mm(3) in 25.4 days (±1.2), compared with delays of 62.3 days (±3.5) for SRT + CDDP and 80.2 days (±5.0) for PRT + CDDP. Time to reach 2× pretreatment volume ranged from 8.2 days (±1.8) for untreated tumors to 67.1 days (±4.7) after PRT + CDDP. Significant differences in tumor growth delay were observed for SRT versus SRT + CDDP (P=.04), PRT versus PRT + CDDP (P=.035), and SRT + CDDP versus PRT + CDDP (P=.033), and for survival between PRT versus PRT + CDDP (P=.017) and SRT + CDDP versus PRT + CDDP (P=.008). Differences in tumor hypoxia were evident by (18)F-fluoromisonidazole positron emission tomography imaging between SRT and PRT (P=.025), although not with concurrent CDDP. Tumor vessel density differed between SRT + CDDP and PRT + CDDP (P=.011). No differences in normal tissue parameters were seen. CONCLUSIONS Concurrent CDDP was more effective in combination PRT than SRT at restricting tumor growth. Significant differences in tumor vascular density were evident between PRT and SRT, suggesting a preservation of vascular network with PRT.
Collapse
Affiliation(s)
- Kurt Meyer
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Sarah A Krueger
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Jonathan L Kane
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Alaa Hanna
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Mohamad Dabjan
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Katie M Hege
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Inga Grills
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Brian Marples
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan.
| |
Collapse
|
8
|
Nisa L, Aebersold DM, Giger R, Zimmer Y, Medová M. Biological, diagnostic and therapeutic relevance of the MET receptor signaling in head and neck cancer. Pharmacol Ther 2014; 143:337-49. [DOI: 10.1016/j.pharmthera.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
|
9
|
Levy-Nissenbaum E, Khan W, Pawar RP, Tabakman R, Naftali E, Winkler I, Kaufman O, Klapper L, Domb AJ. Pharmacokinetic and efficacy study of cisplatin and paclitaxel formulated in a new injectable poly(sebacic-co-ricinoleic acid) polymer. Eur J Pharm Biopharm 2012; 82:85-93. [DOI: 10.1016/j.ejpb.2012.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|
10
|
Targeted therapy in head and neck cancer. Tumour Biol 2012; 33:707-21. [PMID: 22373581 DOI: 10.1007/s13277-012-0350-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/03/2012] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) of multi-factorial etiopathogenesis is rising worldwide. Treatment-associated toxicity problems and treatment failure in advanced disease stages with conventional therapies have necessitated a focus on alternative strategies. Molecular targeted therapy, with the potential for increased selectivity and fewer adverse effects, hold promise in the treatment of HNSCC. In an attempt to improve outcomes in HNSCC, targeted therapeutic strategies have been developed. These strategies are focusing on the molecular biology of HNSCC in an attempt to target selected pathways involved in carcinogenesis. Inhibiting tumor growth and metastasis by focusing on specific protein or signal transduction pathways or by targeting the tumor microenvironment or vasculature are some of the new approaches. Targeted agents for HNSCC expected to improve the effectiveness of current therapy include EGFR inhibitors (Cetuximab, Panitumumab, Zalutumumab), EGFR tyrosine kinase inhibitors (Gefitinib, Erloitinib), VEGFR inhibitors (Bevacizumab, Vandetanib), and various inhibitors of, e.g., Src-family kinase, PARP, proteasome, mTOR, COX, and heat shock protein. Moreover, targeted molecular therapy can also act as a complement to other existing cancer therapies. Several studies have demonstrated that the combination of targeting techniques with conventional current treatment protocols may improve the treatment outcome and disease control, without exacerbating the treatment related toxicities. Some of the targeted approaches have been proved as promising therapeutic potentials and are already in use, whereas remainder exhibits mixed result and necessitates further studies. Identification of predictive biomarkers of resistance or sensitivity to these therapies remains a fundamental challenge in the optimal selection of patients most likely to benefit from targeted treatment.
Collapse
|