1
|
Brown LTL, Pereira D, Winn LM. A Narrative Review on the Effect of Valproic Acid on the Placenta. Birth Defects Res 2025; 117:e2471. [PMID: 40211937 PMCID: PMC11986804 DOI: 10.1002/bdr2.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Valproic acid (VPA) is an antiepileptic and mood-stabilizing drug with well-established teratogenic risks when taken during pregnancy. While its harmful effects on fetal development are well known, less attention has been given to its impact on placental development and function, despite the placenta's critical role in pregnancy. AIM This narrative review examines how VPA exposure affects placental growth, morphology, nutrient transport, and epigenetic modifications. It also considers whether placental dysfunction may contribute VPA's teratogenic effects. RESULTS Evidence suggests that VPA disrupts placental structure and growth, alters the expression of nutrient transporters, such as those for folate, glucose, and amino acids, and modifies the placental epigenome, including globally decreased DNA methylation and increased histone acetylation. DISCUSSION It is hypothesized that these epigenetic changes may influence chromatin remodelling and trophoblast gene expression, though this connection has not been fully established. Such epigenetic dysregulation may result in aberrant gene expression that underlies the structural and functional impairments observed in the placenta, potentially compromising its ability to support fetal development and contributing to VPA's teratogenic effects. Findings across studies, however, are inconsistent, varying with dose, timing of exposure, and model system. Furthermore, there is a lack of research examining sex-specific differences in placental responses to VPA, despite evidence that male and female placentas exhibit distinct growth patterns, gene expression profiles, and susceptibilities to environmental insults. CONCLUSION Addressing these knowledge gaps through targeted research will improve our understanding of how VPA affects the placenta and its role in teratogenesis.
Collapse
Affiliation(s)
- Lauren T. L. Brown
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Delaine Pereira
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Louise M. Winn
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
- School of Environmental SciencesQueen's University at KingstonKingstonOntarioCanada
| |
Collapse
|
2
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wang R, Chen Y, Kuang W, Jiang W, Zeng W, Chen Y, Liu Z. Valproic acid regulates the miR-155/Jarid2 axis by affecting miR-155 promoter methylation in glioma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:174-183. [PMID: 38273784 PMCID: PMC10984859 DOI: 10.3724/abbs.2023259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/05/2023] [Indexed: 01/27/2024] Open
Abstract
The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.
Collapse
Affiliation(s)
- Ruixuan Wang
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yanhong Chen
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Weilu Kuang
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wuzhong Jiang
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wenjing Zeng
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yinyun Chen
- The Third Department of GastroenterologyHunan Provincial People’s HospitalChangsha410000China
| | - Zhengzheng Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
4
|
Natale G, Fini E, Calabrò PF, Carli M, Scarselli M, Bocci G. Valproate and lithium: Old drugs for new pharmacological approaches in brain tumors? Cancer Lett 2023; 560:216125. [PMID: 36914086 DOI: 10.1016/j.canlet.2023.216125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Beyond its use as an antiepileptic drug, over time valproate has been increasingly used for several other therapeutic applications. Among these, the antineoplastic effects of valproate have been assessed in several in vitro and in vivo preclinical studies, suggesting that this agent significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. During the last years various clinical trials have tried to find out if valproate co-administration could enhance the antineoplastic activity of chemotherapy in glioblastoma patients and in patients suffering from brain metastases, demonstrating that the inclusion of valproate in the therapeutic schedule causes an improved median overall survival in some studies, but not in others. Thus, the effects of the use of concomitant valproate in brain cancer patients are still controversial. Similarly, lithium has been tested as an anticancer drug in several preclinical studies mainly using the unregistered formulation of lithium chloride salts. Although, there are no data showing that the anticancer effects of lithium chloride are superimposable to the registered lithium carbonate, this formulation has shown preclinical activity in glioblastoma and hepatocellular cancers. However, few but interesting clinical trials have been performed with lithium carbonate on a very small number of cancer patients. Based on published data, valproate could represent a potential complementary therapeutic approach to enhance the anticancer activity of brain cancer standard chemotherapy. Same advantageous characteristics are less convincing for lithium carbonate. Therefore, the planning of specific phase III studies is necessary to validate the repositioning of these drugs in present and future oncological research.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy; Museum of Human Anatomy "Filippo Civinini", University of Pisa, Italy
| | - Elisabetta Fini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
5
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
6
|
Sullivan JK, Fahey PP, Agho KE, Hurley SP, Feng Z, Day RO, Lim D. Valproic acid as a radio-sensitizer in glioma: A systematic review and meta-analysis. Neurooncol Pract 2023; 10:13-23. [PMID: 36659976 PMCID: PMC9837785 DOI: 10.1093/nop/npac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Histone deacetylase inhibitors (HDACi) including valproic acid (VPA) have the potential to improve radiotherapy (RT) efficacy and reduce treatment adverse events (AE) via epigenetic modification and radio-sensitization of neoplastic cells. This systematic review and meta-analysis aimed to assess the efficacy and AE associated with HDACi used as radio-sensitizers in adult solid organ malignancy patients. Methods A systematic review utilized electronic searches of MEDLINE(Ovid), Embase(Ovid), The Cochrane Library, and the International Clinical Trials Registry Platform to identify studies examining the efficacy and AEs associated with HDACi treatment in solid organ malignancy patients undergoing RT. Meta-analysis was performed with overall survival (OS) reported as hazard ratios (HR) as the primary outcome measure. OS reported as median survival difference, and AEs were secondary outcome measures. Results Ten studies reporting on the efficacy and/or AEs of HDACi in RT-treated solid organ malignancy patients met inclusion criteria. All included studies focused on HDACi valproic acid (VPA) in high-grade glioma patients, of which 9 studies (n = 6138) evaluated OS and 5 studies (n = 1055) examined AEs. The addition of VPA to RT treatment protocols resulted in improved OS (HR = 0.80, 95% CI 0.67-0.96). No studies focusing on non-glioma solid organ malignancy patients, or non-VPA HDACi met the inclusion criteria for this review. Conclusions This review suggests that glioma patients undergoing RT may experience prolonged survival due to HDACi VPA administration. Further randomized controlled trials are required to validate these findings. Additionally, more research into the use of HDACi radio-adjuvant treatment in non-glioma solid organ malignancies is warranted.
Collapse
Affiliation(s)
| | - Paul P Fahey
- School of Health Sciences, Western Sydney University, New South Wales, Australia
| | - Kinglsey E Agho
- School of Health Sciences, Western Sydney University, New South Wales, Australia
| | - Simon P Hurley
- School of Medicine, Flinders University, South Australia, Australia
| | - Zhihui Feng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Richard O Day
- St Vincent’s Clinical Campus, University of New South Wales, New South Wales, Australia
| | - David Lim
- School of Medicine, Flinders University, South Australia, Australia
- School of Health Sciences, Western Sydney University, New South Wales, Australia
- Centre for Remote Health: A JBI Affiliated Centre, Alice Springs, Australia
| |
Collapse
|
7
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Barciszewska AM, Belter A, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Cross-reactivity between histone demethylase inhibitor valproic acid and DNA methylation in glioblastoma cell lines. Front Oncol 2022; 12:1033035. [PMID: 36465345 PMCID: PMC9709419 DOI: 10.3389/fonc.2022.1033035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2023] Open
Abstract
Currently, valproic acid (VPA) is known as an inhibitor of histone deacetylase (epigenetic drug) and is used for the clinical treatment of epileptic events in the course of glioblastoma multiforme (GBM). Which improves the clinical outcome of those patients. We analyzed the level of 5-methylcytosine, a DNA epigenetic modulator, and 8-oxodeoxyguanosine, an cellular oxidative damage marker, affected with VPA administration, alone and in combination with temozolomide (TMZ), of glioma (T98G, U118, U138), other cancer (HeLa), and normal (HaCaT) cell lines. We observed the VPA dose-dependent changes in the total DNA methylation in neoplastic cell lines and the lack of such an effect in a normal cell line. VPA at high concentrations (250-500 μM) induced hypermethylation of DNA in a short time frame. However, the exposition of GBM cells to the combination of VPA and TMZ resulted in DNA hypomethylation. At the same time, we observed an increase of genomic 8-oxo-dG, which as a hydroxyl radical reaction product with guanosine residue in DNA suggests a red-ox imbalance in the cancer cells and radical damage of DNA. Our data show that VPA as an HDAC inhibitor does not induce changes only in histone acetylation, but also changes in the state of DNA modification. It shows cross-reactivity between chromatin remodeling due to histone acetylation and DNA methylation. Finally, total DNA cytosine methylation and guanosine oxidation changes in glioma cell lines under VPA treatment suggest a new epigenetic mechanism of that drug action.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
9
|
Siddiqui S, Deshmukh AJ, Mudaliar P, Nalawade AJ, Iyer D, Aich J. Drug repurposing: re-inventing therapies for cancer without re-entering the development pipeline—a review. J Egypt Natl Canc Inst 2022; 34:33. [PMID: 35934727 PMCID: PMC9358112 DOI: 10.1186/s43046-022-00137-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
While majority of the current treatment approaches for cancer remain expensive and are associated with several side effects, development of new treatment modalities takes a significant period of research, time, and expenditure. An alternative novel approach is drug repurposing that focuses on finding new applications for the previously clinically approved drugs. The process of drug repurposing has also been facilitated by current advances in the field of proteomics, genomics, and information computational biology. This approach not only provides cheaper, effective, and potentially safer drugs with less side effects but also increases the processing pace of drug development. In this review, we wish to highlight some recent developments in the area of drug repurposing in cancer with a specific focus on the repurposing potential of anti-psychotic, anti-inflammatory and anti-viral drugs, anti-diabetic, antibacterial, and anti-fungal drugs.
Collapse
|
10
|
Damanskienė E, Balnytė I, Valančiūtė A, Alonso MM, Stakišaitis D. Different Effects of Valproic Acid on SLC12A2, SLC12A5 and SLC5A8 Gene Expression in Pediatric Glioblastoma Cells as an Approach to Personalised Therapy. Biomedicines 2022; 10:968. [PMID: 35625705 PMCID: PMC9138981 DOI: 10.3390/biomedicines10050968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Valproic acid (VPA) is a histone deacetylase inhibitor with sex-specific immunomodulatory and anticancer effects. This study aimed to investigate the effect of 0.5 and 0.75 mM VPA on NKCC1 (SLC12A2), KCC2 (SLC12A5) and SLC5A8 (SLC5A8) co-transporter gene expressions in pediatric PBT24 (boy's) and SF8628 (girl's) glioblastoma cells. The SLC12A2, SLC12A5 and SLC5A8 RNA expressions were determined by the RT-PCR method. The SLC12A2 and SLC5A8 expressions did not differ between the PBT24 and SF8628 controls. The SLC12A5 expression in the PBT24 control was significantly higher than in the SF8628 control. VPA treatment significantly increased the expression of SLC12A2 in PBT24 but did not affect SF8628 cells. VPA increased the SLC12A5 expression in PBT24 and SF8628 cells. The SLC12A5 expression of the PBT24-treated cells was significantly higher than in corresponding SF8628 groups. Both VPA doses increased the SLC5A8 expression in PBT24 and SF8628 cells, but the expression was significantly higher in the PBT24-treated, compared to the respective SF8628 groups. The SLC5A8 expression in PBT24-treated cells was 10-fold higher than in SF8628 cells. The distinct effects of VPA on the expression of SLC12A2, SLC12A5 and SLC5A8 in PBT24 and SF8628 glioblastoma cells suggest differences in tumor cell biology that may be gender-related.
Collapse
Affiliation(s)
- Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| |
Collapse
|
11
|
You F, Zhang C, Liu X, Ji D, Zhang T, Yu R, Gao S. Drug repositioning: Using psychotropic drugs for the treatment of glioma. Cancer Lett 2021; 527:140-149. [PMID: 34923043 DOI: 10.1016/j.canlet.2021.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Psychotropic drugs can penetrate the blood-brain barrier and regulate the levels of neurotransmitters and neuromodulators such as γ-aminobutyric acid, glutamate, serotonin, dopamine, and norepinephrine in the brain, and thus influence neuronal activity. Neuronal activity in the tumor microenvironment can promote the growth and expansion of glioma. There is increasing evidence that in addition to their use in the treatment of mental disorders, antipsychotic, antidepressant, and mood-stabilizing drugs have clinical potential for cancer therapy. These drugs have been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. In this review, we summarize findings from preclinical and clinical studies investigating the use of antipsychotics, antidepressants, and mood stabilizers in the treatment of various types of cancer, with a focus on glioma; and discuss their presumed antitumor mechanisms. The existing evidence indicates that psychotropic drugs with established pharmacologic and safety profiles can be repurposed as anticancer agents, thus providing new options for the treatment of glioma.
Collapse
Affiliation(s)
- Fangting You
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 379 Tong-Shan Road, Xuzhou, 221004, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, 32 Mei-Jian Road, Xuzhou, 221006, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| |
Collapse
|
12
|
Liu G, Lim D, Cai Z, Ding W, Tian Z, Dong C, Zhang F, Guo G, Wang X, Zhou P, Feng Z. The Valproate Mediates Radio-Bidirectional Regulation Through RFWD3-Dependent Ubiquitination on Rad51. Front Oncol 2021; 11:646256. [PMID: 33842359 PMCID: PMC8029989 DOI: 10.3389/fonc.2021.646256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Ionizing radiation (IR) can induce DNA double-strand breaks (DSBs) in tumor cells during radiotherapy (RT), but the efficiency of RT is limited because of the toxicity to normal cells. Locating an adjuvant treatment to alleviate damage in normal cells while sensitizing tumor cells to IR has attracted much attention. Here, using the 7,12-dimethylbenz[α]anthracene (DMBA)-induced malignant transformed MCF10A cells, we found that valproate (VPA), a histone deacetylase inhibitor (HDACi), radiosensitized transformed cells while alleviated IR-induced damage in normal cells at a safe dose (0.5 mM). We further demonstrated the decrease of homologous recombination (HR)-associated Rad51 in the transformed cells was related to the increase of its ubiquitination regulated by E3 ligase RFWD3 for the radiosensitization, which was opposite to normal cells, indicating that RFWD3-dependent ubiquitination on Rad51 was involved in the VPA-mediated radio-bidirectional effect. Through DMBA-transformed breast cancer rat model, VPA at 200 mg/kg radiosensitized tumor tissue cells by increasing RFWD3 and inhibited Rad51, while radioprotected normal tissue cells by decreasing RFWD3 and enhanced Rad51. In addition, we found high-level Rad51 was associated with tumorigenesis and poor prognosis in breast cancer patients. Our findings uncovered RFWD3-dependent Rad51 ubiquitination was the novel mechanism of VPA-mediated radio-bidirectional effect, VPA is a potential adjuvant treatment for tumor RT.
Collapse
Affiliation(s)
- Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Ding
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhujun Tian
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongshe Guo
- Department of Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University, School of Medicine, St. Louis, MO, United States
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Han W, Yu F, Cao J, Dong B, Guan W, Shi J. Valproic Acid Enhanced Apoptosis by Promoting Autophagy Via Akt/mTOR Signaling in Glioma. Cell Transplant 2020; 29:963689720981878. [PMID: 33356493 PMCID: PMC7873763 DOI: 10.1177/0963689720981878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system with a poor median survival. Valproic acid (VPA), a widely used antiepileptic drug, has been found to have antitumor effects on gliomas, but its role still has not been determined. In this study, we investigated VPA-induced apoptotic and autophagic effects on human U251 and SNB19 cells by cell counting kit-8 assay, flow cytometry, terminal deoxynucleotidyl transferase-mediated nick end labeling staining, western blots, and immunofluorescence assay in vitro, and then we further explored the role of autophagy in apoptosis by using the selective antagonist MHY1485. The data showed that VPA inhibited U251 and SNB19 glioma cells viability in a dose-dependent and time-dependent manner and induced apoptosis through the mitochondria-dependent pathway in vitro. In addition, VPA activated the Akt/mTOR pathway by decreasing their protein phosphorylation to promote cellular apoptosis. Surprisingly, the mTOR agonist MHY1485, causing a strong elevation of mTOR activity, partially reduced apoptosis ratio, which supposing that the autophagy of VPA is involved in the regulation of apoptosis. These findings suggest that VPA enhanced apoptosis by promoting autophagy via Akt/mTOR signaling in glioma, which could be further evaluated as a reliable therapy for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Both the authors contributed equally to this article
| | - Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Both the authors contributed equally to this article
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
14
|
The therapeutic potential of Aurora kinases targeting in glioblastoma: from preclinical research to translational oncology. J Mol Med (Berl) 2020; 98:495-512. [PMID: 32219470 DOI: 10.1007/s00109-020-01895-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most common aggressive primary brain tumor. Standard care includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. However, the impact of this therapeutic approach on patient survival is disappointing and poor outcomes are frequently observed. Therefore, new therapeutic targets are needed to treat this potentially deadly tumor. Aurora kinases are one of today's most sought-after classes of therapeutic targets to glioblastoma therapy. They are a family of proteins composed of three members: Aurora-A, Aurora-B, and Aurora-C that play different roles in the cell division through regulation of chromosome segregation. Deregulation of these genes has been reported in glioblastoma and a progressive number of studies have shown that inhibition of these proteins could be a promising strategy for the treatment of this tumor. This review discusses the preclinical and early clinical findings on the potential use of the Aurora kinases as new targets for the treatment of glioblastoma. KEY MESSAGES: GBM is a very aggressive tumor with limited therapeutic options. Aurora kinases are a family of serine/threonine kinases implicated in GBM pathology. Aurora kinases are critical for glioblastoma cell growth, apoptosis, and chemoresistance. Inhibition of Aurora kinases has a synergistic or sensitizing effect with chemotherapy drugs, radiotherapy, or with other targeted molecules in GBM. Several Aurora kinase inhibitors are currently in clinical trials.
Collapse
|
15
|
Berendsen S, Frijlink E, Kroonen J, Spliet WGM, van Hecke W, Seute T, Snijders TJ, Robe PA. Effects of valproic acid on histone deacetylase inhibition in vitro and in glioblastoma patient samples. Neurooncol Adv 2019; 1:vdz025. [PMID: 32642660 PMCID: PMC7212905 DOI: 10.1093/noajnl/vdz025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The antiepileptic drug valproic acid (VPA) inhibits histone deacetylase in glioblastoma cells in vitro, which influences several oncogenic pathways and decreases glioma cell proliferation. The clinical relevance of these observations remains unclear, as VPA does not seem to affect glioblastoma patient survival. In this study, we analyzed whether the in vitro effects of VPA treatment on histone acetylation are also observed in tumor tissues of glioblastoma patients. Methods The in vitro effects of VPA treatment on histone acetylation were assessed with immunofluorescence and western blotting. On tissue microarrays and in fresh-frozen glioblastoma tissues we investigated the histone acetylation patterns of patients who were either treated with VPA or did not receive antiepileptic drugs at the time of their surgery. We also performed mRNA expression-based and gene set enrichment analyses on these tissues. Results VPA increased the expression levels of acetylated histones H3 and H4 in vitro, in agreement with previous reports. In tumor samples obtained from glioblastoma patients, however, VPA treatment affected neither gene (set) expression nor histone acetylation. Conclusions The in vitro effects of VPA on histone acetylation status in glioblastoma cells could not be confirmed in clinical tumor samples of glioblastoma patients using antiepileptic doses of VPA, which reflects the lack of effect of VPA on the clinical outcome of glioblastoma patients.
Collapse
Affiliation(s)
- Sharon Berendsen
- Departments of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Elselien Frijlink
- Departments of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Jèrôme Kroonen
- Departments of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center of Utrecht, Utrecht, The Netherlands.,Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium
| | - Wim G M Spliet
- Department of Pathology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Tatjana Seute
- Departments of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Tom J Snijders
- Departments of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Pierre A Robe
- Departments of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center of Utrecht, Utrecht, The Netherlands.,Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Bayona-Bafaluy M, Esteban O, Ascaso J, Montoya J, Ruiz-Pesini E. Oxidative phosphorylation inducers fight pathological angiogenesis. Drug Discov Today 2019; 24:1731-1734. [DOI: 10.1016/j.drudis.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
|
17
|
Julie DAR, Ahmed Z, Karceski SC, Pannullo SC, Schwartz TH, Parashar B, Wernicke AG. An overview of anti-epileptic therapy management of patients with malignant tumors of the brain undergoing radiation therapy. Seizure 2019; 70:30-37. [PMID: 31247400 DOI: 10.1016/j.seizure.2019.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
As our surgical, radiation, chemotherapeutic and supportive therapies for brain malignancies improve, and overall survival is prolonged, appropriate symptom management in this patient population becomes increasingly important. This review summarizes the published literature and current practice patterns regarding prophylactic and perioperative anti-epileptic drug use. As a wide range of anti-epileptic drugs is now available to providers, evidence guiding appropriate anticonvulsant choice is reviewed. A particular focus of this article is radiation therapy for brain malignancies. Toxicities and seizure risk associated with cranial irradiation will be discussed. Epilepsy management in patients undergoing radiation for gliomas, glioblastoma multiforme, and brain metastases will be addressed. An emerging but inconsistent body of evidence, reviewed here, indicates that anti-epileptic medications may increase radiosensitivity, and therefore improve clinical outcomes, specifically in glioblastoma multiforme patients.
Collapse
Affiliation(s)
- Diana A R Julie
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States
| | | | - Stephen C Karceski
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, United States
| | - Susan C Pannullo
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Bhupesh Parashar
- Department of Radiation Oncology, Northwell Health, New Hyde Park, NY, United States
| | - A Gabriella Wernicke
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States; Department of Neurosurgery, Weill Medical College of Cornell University, New York, NY, United States.
| |
Collapse
|
18
|
Tongpan S, Sukhorum W, Arun S, Sawatphanich T, Iamsaard S. Valproic acid changes the expression of tyrosine‐phosphorylated proteins in rat seminal vesicle. Andrologia 2019; 51:e13303. [DOI: 10.1111/and.13303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Saranya Tongpan
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | | | - Supatcharee Arun
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | - Tarinee Sawatphanich
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
19
|
Braga C, Vaz AR, Oliveira MC, Matilde Marques M, Moreira R, Brites D, Perry MJ. Targeting gliomas with triazene-based hybrids: Structure-activity relationship, mechanistic study and stability. Eur J Med Chem 2019; 172:16-25. [PMID: 30939350 DOI: 10.1016/j.ejmech.2019.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Herein we report novel hybrid compounds based on valproic acid and DNA-alkylating triazene moieties, 1, with therapeutic potential for glioblastoma multiforme chemotherapy. We identified hybrid compounds 1d and 1e to be remarkably more potent against glioma and more efficient in decreasing invasive cell properties than temozolomide and endowed with chemical and plasma stability. In contrast to temozolomide, which undergoes hydrolysis to release an alkylating metabolite, the valproate hybrids showed a low potential to alkylate DNA. Key physicochemical properties align for optimal CNS penetration, highlighting the potential of these effective triazene based-hybrids for enhanced anticancer chemotherapy.
Collapse
Affiliation(s)
- Cláudia Braga
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana R Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria J Perry
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
20
|
Ciechomska IA, Marciniak MP, Jackl J, Kaminska B. Pre-treatment or Post-treatment of Human Glioma Cells With BIX01294, the Inhibitor of Histone Methyltransferase G9a, Sensitizes Cells to Temozolomide. Front Pharmacol 2018; 9:1271. [PMID: 30450051 PMCID: PMC6224489 DOI: 10.3389/fphar.2018.01271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is a malignant, primary brain tumor, highly resistant to conventional therapies. Temozolomide (TMZ) is a first line therapeutic agent in GBM patients, however, survival of such patients is poor. High level of DNA repair protein, O6-methylguanine-DNA-methyltransferase (MGMT) and occurrence of glioma stem-like cells contribute to GBM resistance to the drug. Here, we explored a possibility of epigenetic reprograming of glioma cells to increase sensitivity to TMZ and restore apoptosis competence. We combined TMZ treatment with BIX01294, an inhibitor of histone methyltransferase G9a, known to be involved in cancerogenesis. Two treatment combinations were tested: BIX01294 was administered to human LN18 and U251 glioma cell cultures 48 h before TMZ or 48 h after TMZ treatment. Despite their different status of the MGMT gene promoter, there was no correlation with the response to TMZ. The analyses of cell viability, appearance of apoptotic alterations in morphology of cells and nuclei, and markers of apoptosis, such as levels of cleaved caspase 3, caspase 7 and PARP, revealed that both pre-treatment and post-treatment with BIX01294 sensitize glioma cells to TMZ. The additive effect was stronger in LN18 cells. Moreover, BIX01294 enhanced the cytotoxic effect of TMZ on glioma stem-like cells, although it was not associated with modulation of the pluripotency markers (NANOG, SOX2, CD133) expression or methylation of NANOG and SOX2 gene promoters. Accordingly, knockdown of methyltransferase G9a augments TMZ-induced cell death in LN18 cells. We found the significant increases of the LC3-II levels in LN18 cells treated with BIX01294 alone and with drug combination that suggests involvement of autophagy in enhancement of anti-tumor effect of TMZ. Treatment with BIX01294 did not affect methylation of the MGMT gene promoter. Altogether, our results suggest that G9a is a potential therapeutic target in malignant glioma and the treatment with the G9a inhibitor reprograms glioma cells and glioma stem-like cells to increase sensitivity to TMZ and restore apoptosis competence.
Collapse
Affiliation(s)
- Iwona Anna Ciechomska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Patrycja Marciniak
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Judyta Jackl
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
21
|
The survival effect of valproic acid in glioblastoma and its current trend: a systematic review and meta-analysis. Clin Neurol Neurosurg 2018; 174:149-155. [PMID: 30243186 DOI: 10.1016/j.clineuro.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) can often present with seizure. Attempts have been made to associate the use of anti-epileptic medication valproic acid (VPA) in standard of care management with survival benefit in the past; however, results to date have been conflicting, and most likely subjected to historical bias. This study aimed to quantify the overall survival (OS) effect of VPA in patients with GBM based on the current literature, and identify potential trend-modifying covariates. Searches of 7 electronic databases from inception to April 2018 were conducted following the appropriate guidelines. Hazard ratios (HRs) derived from Cox proportional hazard models, and mean differences (MDs), were analyzed using the random effects model. Meta-regression was used to identify potential trend-modifying covariates. Seven retrospective cohort studies satisfied selection criteria describing 2181 primary GBM diagnoses, with 534 (24%) receiving VPA in their treatment. Overall, VPA was shown to confer a statistically significant OS advantage (HR, 0.71; 95% CI, 0.56-0.91; p < 0.01) compared to the control group by up to 2.4 months (95% CI, 1.51-3.21; p < 0.01). However, upon meta-regression, this survival advantage as inferred by HRs trended towards the null in newer studies (slope, 1.15; p = 0.02) or in studies with older participants (slope, 1.13; p = 0.02). A similar result was seen with MDs. Based on the literature to date, VPA was significantly associated with better OS in GBM patients by 2.4 months when managed by current standard of care. However, this effect was particularly emphasized among older studies or studies conducted in younger participants indicating the need to exercise caution in assuming generalizability of the pooled effect. Overall, there is considerable bias risks in the current interpretation of the literature, and larger, prospective studies are required for validating our findings.
Collapse
|
22
|
Shah RR, Stonier PD. Repurposing old drugs in oncology: Opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther 2018; 44:6-22. [PMID: 30218625 DOI: 10.1111/jcpt.12759] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE In order to expedite the availability of drugs to treat cancers in a cost-effective manner, repurposing of old drugs for oncological indications is gathering momentum. Revolutionary advances in pharmacology and genomics have demonstrated many old drugs to have activity at novel antioncogenic pharmacological targets. We decided to investigate whether prospective studies support the promises of nonclinical and retrospective clinical studies on repurposing three old drugs, namely metformin, valproate and astemizole. METHODS We conducted an extensive literature search through PubMed to gather representative nonclinical and retrospective clinical studies that investigated the potential repurposing of these three drugs for oncological indications. We then searched for prospective studies aimed at confirming the promises of retrospective data. RESULTS AND DISCUSSION While evidence from nonclinical and retrospective clinical studies with these drugs appears highly promising, large scale prospective studies are either lacking or have failed to substantiate this promise. We provide a brief discussion of some of the challenges in repurposing. Principal challenges and obstacles relate to heterogeneity of cancers studied without considering their molecular signatures, trials with small sample size and short duration, failure consider issues of ethnicity of study population and effective antioncogenic doses of the drug studied. WHAT IS NEW AND CONCLUSION Well-designed prospective studies demonstrating efficacy are required for repurposing old drugs for oncology indications, just as they are for new chemical entities for any indication. Early and ongoing interactions with regulatory authorities are invaluable. We outline a tentative framework for a structured approach to repurposing old drugs for novel indications in oncology.
Collapse
Affiliation(s)
- Rashmi R Shah
- Pharmaceutical Consultant, Gerrards Cross, Buckinghamshire, UK
| | - Peter D Stonier
- Department of Pharmaceutical Medicine, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| |
Collapse
|
23
|
Chen YH, Zeng WJ, Wen ZP, Cheng Q, Chen XP. Under explored epigenetic modulators: role in glioma chemotherapy. Eur J Pharmacol 2018; 833:201-209. [PMID: 29864410 DOI: 10.1016/j.ejphar.2018.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Patients with somatic mutations of epigenetic regulators are characterized by aberrant chromatin modification patterns. Recent mechanistic studies pairing chemical tool compounds and deep-sequencing technology have greatly broadened our understanding of epigenetic regulation in glioma progression and underpinned alternative treatment of epigenetic inhibitors. However, the effect of most inhibitors is condition-dependent, and the overall results of clinical trials still have not been applied to patients. There is an intense need to develop more potent and specific compounds as well as identify the population who may achieve clinical benefits. Besides, combination therapy with conventional therapeutics is another alternative strategy. In this review, we summarize well-characterized chemical probes in glioma research and clinical translation. We also discuss the target population and combination of therapy regimens of various agents. In a holistic sense, we try to provide guidance for selecting targeted chemical probes and pave the way for personalized rational therapy.
Collapse
Affiliation(s)
- Yan-Hong Chen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Wen-Jing Zeng
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhi-Peng Wen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Quan Cheng
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xiao-Ping Chen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| |
Collapse
|
24
|
Huang J, Zhao D, Liu Z, Liu F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett 2018; 419:257-265. [PMID: 29414306 DOI: 10.1016/j.canlet.2018.01.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
Abstract
Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, 410011, China; Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Danwei Zhao
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
25
|
Head RJ, Fay MF, Cosgrove L, Y. C. Fung K, Rundle-Thiele D, Martin JH. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma. Cancer Biol Ther 2017; 18:917-926. [PMID: 29020502 PMCID: PMC5718815 DOI: 10.1080/15384047.2017.1385680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/01/2017] [Accepted: 09/24/2017] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O6-methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.
Collapse
Affiliation(s)
- R. J. Head
- University of South Australia, Adelaide, SA, Australia
| | - M. F. Fay
- University of Newcastle, Newcastle, NSW, Australia
- Genesis Cancer Care, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - L. Cosgrove
- CSIRO Health & Biosecurity, Adelaide, SA, Australia
| | | | - D. Rundle-Thiele
- School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - J. H. Martin
- University of Newcastle, Newcastle, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Rizzo A, Donzelli S, Girgenti V, Sacconi A, Vasco C, Salmaggi A, Blandino G, Maschio M, Ciusani E. In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:76. [PMID: 28587680 PMCID: PMC5460451 DOI: 10.1186/s13046-017-0546-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
Abstract
Background Epilepsy is a frequent symptom in patients with glioma. Although treatment with antiepileptic drugs is generally effective in controlling seizures, drug-resistant patients are not uncommon. Multidrug resistance proteins (MRPs) and P-gp are over-represented in brain tissue of patients with drug-resistant epilepsy, suggesting their involvement in the clearance of antiepileptic medications. In addition to their anticonvulsant action, some drugs have been documented for cytotoxic effects. Aim of this study was to evaluate possible in vitro cytotoxic effects of two new-generation antiepileptic drugs on a human glioma cell line U87MG. Methods Cytotoxicity of brivaracetam and lacosamide was tested on U87MG, SW1783 and T98G by MTS assay. Expression of chemoresistance molecules was evaluated using flow cytometry in U87MG and human umbilical vein endothelial cells (HUVECs). To investigate the putative anti-proliferative effect, apoptosis assay, microRNA expression profile and study of cell cycle were performed. Results Brivaracetam and lacosamide showed a dose-dependent cytotoxic and anti-migratory effects. Cytotoxicity was not related to apoptosis. The exposure of glioma cells to brivaracetam and lacosamide resulted in the modulation of several microRNAs; particularly, the effect of miR-195-5p modulation seemed to affect cell cycle, while miR-107 seemed to be implicated in the inhibition of cells migration. Moreover, brivaracetam and lacosamide treatment did not modulate the expression of chemoresistance-related molecules MRPs1-3-5, GSTπ, P-gp on U87MG and HUVECs. Conclusion Based on antineoplastic effect of brivaracetam and lacosamide on glioma cells, we assume that patients with glioma could benefit by the treatment with these two molecules, in addition to standard therapeutic options. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0546-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ambra Rizzo
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 5300144, Rome, Italy
| | - Vita Girgenti
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 5300144, Rome, Italy
| | - Chiara Vasco
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Andrea Salmaggi
- Neurologia- Stroke Unit, Manzoni Hospital, Via dell'Eremo 9/11, 23900, Lecco, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 5300144, Rome, Italy
| | - Marta Maschio
- Center for tumor-related epilepsy, Area of Supporting Care, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| |
Collapse
|
27
|
Iamsaard S, Sukhorum W, Arun S, Phunchago N, Uabundit N, Boonruangsri P, Namking M. Valproic acid induces histologic changes and decreases androgen receptor levels of testis and epididymis in rats. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.4.217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
28
|
The Effect of Sodium Valproate on the Glioblastoma U87 Cell Line Tumor Development on the Chicken Embryo Chorioallantoic Membrane and on EZH2 and p53 Expression. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642877 PMCID: PMC5469982 DOI: 10.1155/2017/6326053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Literature data support evidences that glioblastoma (GBM) patients experience prolonged survival due to sodium valproate (NaVP) treatment. The study assessed the human GBM cell U87 xenograft studied in the chicken embryo chorioallantoic membrane (CAM) model evaluating NaVP effect on tumor. Three groups of tumors (each n = 10) were studied: nontreated, treated with 4 mM, and treated with 8 mM of NaVP. The majority of tumors without NaVP treatment during tumor growth destroyed the chorionic epithelium, invaded the mesenchyme, and induced angiogenesis. Incidence of tumor formation on CAM without invasion into the mesenchyme was higher when U87 cells were treated with NaVP; the effect significantly increased with NaVP concentration. Treatment with 8 mM of NaVP did not show clear dynamics of tumor growth during 5 days; at the same time, the angiogenesis failed. With a strong staining of EZH2, p53 in tumors without NaVP treatment was found, and NaVP significantly decreased the expression of EZH2- and p53-positive cells; the effect was significantly higher at its 8 mM concentration. NaVP has a function in blocking the growth, invasion, and angiogenesis of tumor in the CAM model; tumor growth interferes with EZH2 and p53 molecular pathways, supporting the NaVP potential in GBM therapy.
Collapse
|
29
|
Liu S, Liang B, Jia H, Jiao Y, Pang Z, Huang Y. Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio 2017; 7:798-810. [PMID: 28593135 PMCID: PMC5458469 DOI: 10.1002/2211-5463.12223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023] Open
Abstract
Effective drug combinations have the potential to strengthen therapeutic efficacy and combat drug resistance. Both melatonin and valproic acid (VPA) exhibit antitumor activities in various cancer cells. The aim of this study was to evaluate the cell death pathways initiated by anticancer combinatorial effects of melatonin and VPA in bladder cancer cells. The results demonstrated that the combination of melatonin and VPA leads to significant synergistic growth inhibition of UC3 bladder cancer cells. Gene expression studies revealed that cotreatment with melatonin and VPA triggered the up-regulation of certain genes related to apoptosis (TNFRSF10A and TNFRSF10B), autophagy (BECN, ATG3 and ATG5) and necrosis (MLKL, PARP-1 and RIPK1). The combinatorial treatment increased the expression of endoplasmic reticulum (ER)-stress-related genes ATF6, IRE1, EDEM1 and ERdj4. Cotreatment with melatonin and VPA enhanced the expression of E-cadherin, and decreased the expression of N-cadherin, Fibronectin, Snail and Slug. Furthermore, the Wnt pathway and Raf/MEK/ERK pathway were activated by combinatorial treatment. However, the effects on the expression of certain genes were not further enhanced in cells following combinatorial treatment in comparison to individual treatment of melatonin or VPA. In summary, these findings provided evidence that cotreatment with melatonin and VPA exerted increased cytotoxicity by regulating cell death pathways in UC3 bladder cancer cells, but the clinical significance of combinatorial treatment still needs to be further exploited.
Collapse
Affiliation(s)
- Siwei Liu
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Bilin Liang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Huiting Jia
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yuhan Jiao
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Zhongqiu Pang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
30
|
Sukhorum W, Iamsaard S. Changes in testicular function proteins and sperm acrosome status in rats treated with valproic acid. Reprod Fertil Dev 2017; 29:1585-1592. [DOI: 10.1071/rd16205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
Valproic acid (VPA), an anti-epileptic drug, reduces testosterone levels and sperm quality. However, the degree to which testosterone levels and sperm quality are decreased under VPA treatment needs to be clarified. The aim of the present study was to investigate the testicular proteins involved in testosterone synthesis and spermatogenesis, histopathology and sperm acrosome status in VPA-treated rats. Adult rats were divided into control and experimental groups (n = 8 in each). Rats in the experimental group were treated with 500 mg kg–1, i.p., VPA for 10 consecutive days. Expression of Ki-67, tyrosine phosphorylated proteins and testicular steroidogenic proteins was examined. As expected, VPA-treated rats exhibited adverse changes in almost all reproductive parameters, particularly an increase in precocious acrosome reactions, compared with the control group. In addition, fibrosis of the tunica albuginea and tubule basement membrane was observed in testes from VPA-treated rats. Moreover, the expression of testicular Ki-67, cholesterol side-chain cleavage enzyme (P450scc) and phosphorylated proteins (41, 51 and 83 kDa) was decreased significantly in VPA-treated rats compared with control. In contrast, the expression of steroidogenic acute regulatory proteins in the VPA-treated group was significantly higher than in the control group. In conclusion, VPA treatment changes the expression of testicular proteins responsible for spermatogenesis and testosterone production, resulting in male infertility.
Collapse
|
31
|
Mallick S, Benson R, Hakim A, Rath GK. Management of glioblastoma after recurrence: A changing paradigm. J Egypt Natl Canc Inst 2016; 28:199-210. [PMID: 27476474 DOI: 10.1016/j.jnci.2016.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma remains the most common primary brain tumor after the age of 40years. Maximal safe surgery followed by adjuvant chemoradiotherapy has remained the standard treatment for glioblastoma (GBM). But recurrence is an inevitable event in the natural history of GBM with most patients experiencing it after 6-9months of primary treatment. Recurrent GBM poses great challenge to manage with no well-defined management protocols. The challenge starts from differentiating radiation necrosis from true local progression. A fine balance needs to be maintained on improving survival and assuring a better quality of life. Treatment options are limited and ranges from re-excision, re-irradiation, systemic chemotherapy or a combination of these. Re-excision and re-irradiation must be attempted in selected patients and has been shown to improve survival outcomes. To facilitate the management of GBM recurrences, a treatment algorithm is proposed.
Collapse
Affiliation(s)
- Supriya Mallick
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India.
| | - Rony Benson
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul Hakim
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Goura K Rath
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Knudsen-Baas KM, Engeland A, Gilhus NE, Storstein AM, Owe JF. Does the choice of antiepileptic drug affect survival in glioblastoma patients? J Neurooncol 2016; 129:461-469. [DOI: 10.1007/s11060-016-2191-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 12/27/2022]
|
33
|
Patties I, Kortmann RD, Menzel F, Glasow A. Enhanced inhibition of clonogenic survival of human medulloblastoma cells by multimodal treatment with ionizing irradiation, epigenetic modifiers, and differentiation-inducing drugs. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:94. [PMID: 27317342 PMCID: PMC4912728 DOI: 10.1186/s13046-016-0376-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Background Medulloblastoma (MB) is the most common pediatric brain tumor. Current treatment regimes consisting of primary surgery followed by radio- and chemotherapy, achieve 5-year overall survival rates of only about 60 %. Therapy-induced endocrine and neurocognitive deficits are common late adverse effects. Thus, improved antitumor strategies are urgently needed. In this study, we combined irradiation (IR) together with epigenetic modifiers and differentiation inducers in a multimodal approach to enhance the efficiency of tumor therapy in MB and also assessed possible late adverse effects on neurogenesis. Methods In three human MB cell lines (DAOY, MEB-Med8a, D283-Med) short-time survival (trypan blue exclusion assay), apoptosis, autophagy, cell cycle distribution, formation of gH2AX foci, and long-term reproductive survival (clonogenic assay) were analyzed after treatment with 5-aza-2′-deoxycytidine (5-azadC), valproic acid (VPA), suberanilohydroxamic acid (SAHA), abacavir (ABC), all-trans retinoic acid (ATRA) and resveratrol (RES) alone or combined with 5-aza-dC and/or IR. Effects of combinatorial treatments on neurogenesis were evaluated in cultured murine hippocampal slices from transgenic nestin-CFPnuc C57BL/J6 mice. Life imaging of nestin-positive neural stem cells was conducted at distinct time points for up to 28 days after treatment start. Results All tested drugs showed a radiosynergistic action on overall clonogenic survival at least in two-outof-three MB cell lines. This effect was pronounced in multimodal treatments combining IR, 5-aza-dC and a second drug. Hereby, ABC and RES induced the strongest reduction of clongenic survival in all three MB cell lines and led to the induction of apoptosis (RES, ABC) and/or autophagy (ABC). Additionally, 5-aza-dC, RES, and ABC increased the S phase cell fraction and induced the formation of gH2AX foci at least in oneout-of-three cell lines. Thereby, the multimodal treatment with 5-aza-dC, IR, and RES or ABC did not change the number of normal neural progenitor cells in murine slice cultures. Conclusion In conclusion, the radiosensitizing capacities of epigenetic and differentiation-inducing drugs presented here suggest that their adjuvant administration might improve MB therapy. Thereby, the combination of 5-aza-dC/IR with ABC and RES seemed to be the most promising to enhance tumor control without affecting the normal neural precursor cells.
Collapse
Affiliation(s)
- Ina Patties
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany.
| | - Rolf-Dieter Kortmann
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| | - Franziska Menzel
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| |
Collapse
|
34
|
Hsu YC, Kao CY, Chung YF, Lee DC, Liu JW, Chiu IM. Activation of Aurora A kinase through the FGF1/FGFR signaling axis sustains the stem cell characteristics of glioblastoma cells. Exp Cell Res 2016; 344:153-66. [PMID: 27138904 DOI: 10.1016/j.yexcr.2016.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Fibroblast growth factor 1 (FGF1) binds and activates FGF receptors, thereby regulating cell proliferation and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven SV40 T antigen has been shown to result in tumorigenesis in the brains of transgenic mice. FGF1B promoter (-540 to +31)-driven green fluorescent protein (F1BGFP) has also been used in isolating neural stem cells (NSCs) with self-renewal and multipotency from developing and adult mouse brains. In this study, we provide six lines of evidence to demonstrate that FGF1/FGFR signaling is implicated in the expression of Aurora A (AurA) and the activation of its kinase domain (Thr288 phosphorylation) in the maintenance of glioblastoma (GBM) cells and NSCs. First, treatment of FGF1 increases AurA expression in human GBM cell lines. Second, using fluorescence-activated cell sorting, we observed that F1BGFP reporter facilitates the isolation of F1BGFP(+) GBM cells with higher expression levels of FGFR and AurA. Third, both FGFR inhibitor (SU5402) and AurA inhibitor (VX680) could down-regulate F1BGFP-dependent AurA activity. Fourth, inhibition of AurA activity by two different AurA inhibitors (VX680 and valproic acid) not only reduced neurosphere formation but also induced neuronal differentiation of F1BGFP(+) GBM cells. Fifth, flow cytometric analyses demonstrated that F1BGFP(+) GBM cells possessed different NSC cell surface markers. Finally, inhibition of AurA by VX680 reduced the neurosphere formation of different types of NSCs. Our results show that activation of AurA kinase through FGF1/FGFR signaling axis sustains the stem cell characteristics of GBM cells. IMPLICATIONS This study identified a novel mechanism for the malignancy of GBM, which could be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chien-Yu Kao
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Fen Chung
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Don-Ching Lee
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Wei Liu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ing-Ming Chiu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
35
|
Mellai M, Cattaneo M, Storaci AM, Annovazzi L, Cassoni P, Melcarne A, De Blasio P, Schiffer D, Biunno I. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy. Oncotarget 2016; 6:12452-67. [PMID: 25948789 PMCID: PMC4494950 DOI: 10.18632/oncotarget.3611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
The suppressor of Lin-12-like (C. elegans) (SEL1L) is involved in the endoplasmic reticulum (ER)-associated degradation pathway, malignant transformation and stem cells. In 412 formalin-fixed and paraffin-embedded brain tumors and 39 Glioblastoma multiforme (GBM) cell lines, we determined the frequency of five SEL1L single nucleotide genetic variants with regulatory and coding functions by a SNaPShot™ assay. We tested their possible association with brain tumor risk, prognosis and therapy. We studied the in vitro cytotoxicity of valproic acid (VPA), temozolomide (TMZ), doxorubicin (DOX) and paclitaxel (PTX), alone or in combination, on 11 GBM cell lines, with respect to the SNP rs12435998 genotype. The SNP rs12435998 was prevalent in anaplastic and malignant gliomas, and in meningiomas of all histologic grades, but unrelated to brain tumor risks. In GBM patients, the SNP rs12435998 was associated with prolonged overall survival (OS) and better response to TMZ-based radio-chemotherapy. GBM stem cells with this SNP showed lower levels of SEL1L expression and enhanced sensitivity to VPA.
Collapse
Affiliation(s)
- Marta Mellai
- Neuro-Bio-Oncology Center/Policlinico di Monza Foundation, Vercelli 13100, Italy
| | - Monica Cattaneo
- Institute for Genetic and Biomedical Research, National Research Council, Milan 20138, Italy
| | | | - Laura Annovazzi
- Neuro-Bio-Oncology Center/Policlinico di Monza Foundation, Vercelli 13100, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin/Città della Salute e della Scienza, Turin 10126, Italy
| | - Antonio Melcarne
- Department of Neurosurgery, CTO Hospital/Città della Salute e della Scienza, Turin 10126, Italy
| | | | - Davide Schiffer
- Neuro-Bio-Oncology Center/Policlinico di Monza Foundation, Vercelli 13100, Italy
| | - Ida Biunno
- Institute for Genetic and Biomedical Research, National Research Council, Milan 20138, Italy.,IRCCS-Multimedica, Milan 20138, Italy
| |
Collapse
|
36
|
Rudà R, Pellerino A, Soffietti R. Does valproic acid affect tumor growth and improve survival in glioblastomas? CNS Oncol 2016; 5:51-3. [PMID: 26985579 DOI: 10.2217/cns-2016-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University & City of Health and Science Hospital, Via Cherasco 15, 10126, Turin, Italy
| | - Alessia Pellerino
- Department of Neuro-Oncology, University & City of Health and Science Hospital, Via Cherasco 15, 10126, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University & City of Health and Science Hospital, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
37
|
Lee JK, Nam DOH, Lee J. Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges. Oncol Lett 2016; 11:1281-1286. [PMID: 26893731 DOI: 10.3892/ol.2016.4074] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most lethal primary brain tumor, with tragically little therapeutic progress over the last 30 years. Surgery provides a modest benefit, and GBM cells are resistant to radiation and chemotherapy. Despite significant development of the molecularly targeting strategies, the clinical outcome of GBM patients remains dismal. The challenges inherent in developing effective GBM treatments have become increasingly clear, and include resistance to standard treatments, the blood-brain barrier, resistance of GBM stem-like cells, and the genetic complexity and molecular adaptability of GBM. Recent studies have collectively suggested that certain antipsychotics harbor antitumor effects and have potential utilities as anti-GBM therapeutics. In the present review, the anti-tumorigenic effects and putative mechanisms of antipsychotics, and the challenges for the potential use of antipsychotic drugs as anti-GBM therapeutics are reviewed.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Cancer Stem Cell Research Center, Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - DO-Hyun Nam
- Cancer Stem Cell Research Center, Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
38
|
Takada M, Fujimoto M, Motomura H, Hosomi K. Inverse Association between Sodium Channel-Blocking Antiepileptic Drug Use and Cancer: Data Mining of Spontaneous Reporting and Claims Databases. Int J Med Sci 2016; 13:48-59. [PMID: 26816494 PMCID: PMC4716819 DOI: 10.7150/ijms.13834] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/27/2015] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Voltage-gated sodium channels (VGSCs) are drug targets for the treatment of epilepsy. Recently, a decreased risk of cancer associated with sodium channel-blocking antiepileptic drugs (AEDs) has become a research focus of interest. The purpose of this study was to test the hypothesis that the use of sodium channel-blocking AEDs are inversely associated with cancer, using different methodologies, algorithms, and databases. METHODS A total of 65,146,507 drug-reaction pairs from the first quarter of 2004 through the end of 2013 were downloaded from the US Food and Drug Administration Adverse Event Reporting System. The reporting odds ratio (ROR) and information component (IC) were used to detect an inverse association between AEDs and cancer. Upper limits of the 95% confidence interval (CI) of < 1 and < 0 for the ROR and IC, respectively, signified inverse associations. Furthermore, using a claims database, which contains 3 million insured persons, an event sequence symmetry analysis (ESSA) was performed to identify an inverse association between AEDs and cancer over the period of January 2005 to May 2014. The upper limit of the 95% CI of adjusted sequence ratio (ASR) < 1 signified an inverse association. RESULTS In the FAERS database analyses, significant inverse associations were found between sodium channel-blocking AEDs and individual cancers. In the claims database analyses, sodium channel-blocking AED use was inversely associated with diagnoses of colorectal cancer, lung cancer, gastric cancer, and hematological malignancies, with ASRs of 0.72 (95% CI: 0.60 - 0.86), 0.65 (0.51 - 0.81), 0.80 (0.65 - 0.98), and 0.50 (0.37 - 0.66), respectively. Positive associations between sodium channel-blocking AEDs and cancer were not found in the study. CONCLUSION Multi-methodological approaches using different methodologies, algorithms, and databases suggest that sodium channel-blocking AED use is inversely associated with colorectal cancer, lung cancer, gastric cancer, and hematological malignancies.
Collapse
Affiliation(s)
- Mitsutaka Takada
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Mai Fujimoto
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Haruka Motomura
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Kouichi Hosomi
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
39
|
Gefroh-Grimes HA, Gidal BE. Antiepileptic drugs in patients with malignant brain tumor: beyond seizures and pharmacokinetics. Acta Neurol Scand 2016; 133:4-16. [PMID: 25996875 DOI: 10.1111/ane.12437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 02/06/2023]
Abstract
In neurological malignancies, antiepileptic drugs (AEDs) are frequently used to control the seizure activity that accompanies the disorder. There is a growing body of evidence on the importance of AED selection for reasons other than pharmacokinetics (PK) properties. Epigenetic modifications may occur in glioblastomas, such as changes in gene methylation and histone acetylation states. Secondary mechanisms of AED drug action which impact these epigenetic modifications could play a significant role in patient survival outcomes. Both valproic acid (VPA) and carbamazepine have histone deacetylase (HDAC) inhibitory activities, and levetiracetam and VPA reduce the activity of O6-methylguanine-DNA methyltransferase (MGMT), a DNA-repair molecule implicated in resistance to alkylating agents used for chemotherapy. The use of AEDs for purposes other than seizure prophylaxis and their selection based on non-PK properties present a potential paradigm shift in the field of neuro-oncology.
Collapse
Affiliation(s)
- H. A. Gefroh-Grimes
- Pharmacy Practice Division; School of Pharmacy; University of Wisconsin-Madison; Madison WI USA
| | - B. E. Gidal
- School of Pharmacy & Department of Neurology; University of Wisconsin-Madison; Madison WI USA
| |
Collapse
|
40
|
Seet LF, Toh LZ, Finger SN, Chu SWL, Stefanovic B, Wong TT. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis. J Mol Med (Berl) 2015; 94:321-34. [PMID: 26507880 PMCID: PMC4803820 DOI: 10.1007/s00109-015-1358-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 04/17/2023]
Abstract
Overproduction of type I collagen is associated with a wide range of fibrotic diseases as well as surgical failure such as in glaucoma filtration surgery (GFS). Its modulation is therefore of clinical importance. Valproic acid (VPA) is known to reduce collagen in a variety of tissues with unclear mechanism of action. In this report, we demonstrate that VPA inhibited collagen production in both conjunctival fibroblasts and the mouse model of GFS. In fibroblasts, VPA decreased type I collagen expression which intensified with longer drug exposure and suppressed steady-state type I collagen promoter activity. Moreover, VPA decreased Smad2, Smad3 and Smad4 but increased Smad6 expression with a similar intensity-exposure profile. Reduction of Smad3 using small hairpin RNA and/or overexpression of Smad6 resulted in decreased collagen expression which was exacerbated when VPA was simultaneously present. Furthermore, fibrogenic TGF-β2 failed to induce collagen when VPA was present, as opposed to the myofibroblast markers, beta-actin, alpha-smooth muscle actin and tenascin-C, which were elevated by TGF-β2. VPA suppressed p3TP-Lux luciferase activity and selectively rescued Smad6 expression from suppression by TGF-β2. Notably, SMAD6 overexpression reduced the effectiveness of TGF-β2 in inducing collagen expression. In corroboration, VPA inhibited type I collagen but increased Smad6 expression in the late phase of wound healing in the mouse model of GFS. Taken together, our data indicate that VPA has the capacity to effectively suppress both steady-state and fibrogenic activation of type I collagen expression by modulating Smad expression. Hence, VPA is potentially applicable as an anti-fibrotic therapeutic by targeting collagen. Key message: • VPA modulates type I collagen expression via members of the Smad family. • VPA suppresses Smad2, Smad3 and Smad4 but upregulates Smad6. • Smad3 and Smad6 are involved in VPA regulation of steady-state collagen expression. • Smad6 is involved in VPA modulation of TGF-β-stimulated collagen expression. • VPA reduces collagen and upregulates Smad6 in the mouse model of glaucoma filtration surgery.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School Singapore, Singapore, Singapore.
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Sharon N Finger
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School Singapore, Singapore, Singapore. .,Glaucoma Service, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore. .,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
41
|
Berendsen S, Varkila M, Kroonen J, Seute T, Snijders TJ, Kauw F, Spliet WGM, Willems M, Poulet C, Broekman ML, Bours V, Robe PA. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol 2015; 18:700-6. [PMID: 26420896 DOI: 10.1093/neuonc/nov238] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epileptogenic glioblastomas are thought to convey a favorable prognosis, either due to early diagnosis or potential antitumor effects of antiepileptic drugs. We investigated the relationship between survival and epilepsy at presentation, early diagnosis, and antiepileptic drug therapy in glioblastoma patients. METHODS Multivariable Cox regression was applied to survival data of 647 consecutive patients diagnosed with de novo glioblastoma between 2005 and 2013 in order to investigate the association between epilepsy and survival in glioblastoma patients. In addition, we quantified the association between survival and valproic acid (VPA) treatment. RESULTS Epilepsy correlated positively with survival (HR: 0.75 (95% CI: 0.61-0.92), P < .01). This effect is independent of age, sex, performance status, type of surgery, adjuvant therapy, tumor location, and tumor volume, suggesting that this positive correlation cannot be attributed solely to early diagnosis. For patients who presented with epilepsy, the use of the antiepileptic drug VPA did not associate with survival when compared with patients who did not receive VPA treatment. CONCLUSION Epilepsy is an independent prognostic factor for longer survival in glioblastoma patients. This prognostic effect is not solely explained by early diagnosis, and survival is not associated with VPA treatment.
Collapse
Affiliation(s)
- Sharon Berendsen
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Meri Varkila
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Jérôme Kroonen
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Tatjana Seute
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Tom J Snijders
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Frans Kauw
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Wim G M Spliet
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Marie Willems
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Christophe Poulet
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Marike L Broekman
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Vincent Bours
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| | - Pierre A Robe
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, Netherlands (S.B., M.V., J.K., T.S., T.J.S., F.K., M.L.B., P.A.R.); Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands (W.G.M.S.); Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium (M.W., C.P., V.B., P.A.R.)
| |
Collapse
|
42
|
|
43
|
Bilen MA, Fu S, Falchook GS, Ng CS, Wheler JJ, Abdelrahim M, Erguvan-Dogan B, Hong DS, Tsimberidou AM, Kurzrock R, Naing A. Phase I trial of valproic acid and lenalidomide in patients with advanced cancer. Cancer Chemother Pharmacol 2015; 75:869-74. [PMID: 25666183 DOI: 10.1007/s00280-015-2695-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/30/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE The objectives of this study were to evaluate the tolerability and efficacy of valproic acid (VPA) and lenalidomide. METHODS In this 3+3 design study, VPA was administered daily on a 7-day-on, 7-day-off schedule, and lenalidomide was administered daily for 28 days. Because of the response noted during the dose-escalation phase, 12 additional patients with adenoid cystic carcinoma (ACC) received the maximum tolerated dose (MTD) in a dose-expansion phase. RESULTS Twenty-six patients with advanced cancer (14 men/12 women), median age of 56 years (range 38-70 years), and a median number of two prior therapies (range 0-12) were enrolled. The most common toxicities were fatigue, rash, neutropenia, thrombocytopenia, and change in mental status. Dose-limiting toxic (DLT) effects were grade III confusion (n = 3), somnolence (n = 1), and gait disturbance (n = 1). The MTD was reached at VPA 30 mg/kg and lenalidomide 25 mg. Although only two of the 12 patients from the dose-expansion phase had DLT during the first cycle at the MTD, during subsequent cycles the majority of patients required dose reduction of VPA to 5-20 mg/kg because of fatigue and drowsiness. No significant tumor reductions were noticed in patients with ACC, but seven of these patients had stable disease over four cycles. Of non-ACC patients, one patient with melanoma and one patient with parathyroid carcinoma had stable disease for six cycles and eight cycles, respectively. CONCLUSIONS Lenalidomide combined with VPA was well tolerated. We recommend starting VPA at 5 mg/kg and titrating upward to 20 mg/kg. No significant tumor reductions were noticed in patients with ACC.
Collapse
Affiliation(s)
- Mehmet Asim Bilen
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
NRSF: an Angel or a Devil in Neurogenesis and Neurological Diseases. J Mol Neurosci 2014; 56:131-44. [DOI: 10.1007/s12031-014-0474-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022]
|
45
|
Survival analysis for valproic acid use in adult glioblastoma multiforme: A meta-analysis of individual patient data and a systematic review. Seizure 2014; 23:830-5. [DOI: 10.1016/j.seizure.2014.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/22/2014] [Accepted: 06/29/2014] [Indexed: 11/23/2022] Open
|
46
|
Riehmer V, Gietzelt J, Beyer U, Hentschel B, Westphal M, Schackert G, Sabel MC, Radlwimmer B, Pietsch T, Reifenberger G, Weller M, Weber RG, Loeffler M. Genomic profiling reveals distinctive molecular relapse patterns in IDH1/2 wild-type glioblastoma. Genes Chromosomes Cancer 2014; 53:589-605. [PMID: 24706357 DOI: 10.1002/gcc.22169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/12/2014] [Indexed: 12/28/2022] Open
Abstract
Molecular changes associated with the progression of glioblastoma after standard radiochemotherapy remain poorly understood. We compared genomic profiles of 27 paired primary and recurrent IDH1/2 wild-type glioblastomas by genome-wide array-based comparative genomic hybridization. By bioinformatic analysis, primary and recurrent tumor profiles were normalized and segmented, chromosomal gains and losses identified taking the tumor cell content into account, and difference profiles deduced. Seven of 27 (26%) pairs lacked DNA copy number differences between primary and recurrent tumors (equal pairs). The recurrent tumors in 9/27 (33%) pairs contained all chromosomal imbalances of the primary tumors plus additional ones, suggesting a sequential acquisition of and/or selection for aberrations during progression (sequential pairs). In 11/27 (41%) pairs, the profiles of primary and recurrent tumors were divergent, i.e., the recurrent tumors contained additional aberrations but had lost others, suggesting a polyclonal composition of the primary tumors and considerable clonal evolution (discrepant pairs). Losses on 9p21.3 harboring the CDKN2A/B locus were significantly more common in primary tumors from sequential and discrepant (nonequal) pairs. Nonequal pairs showed ten regions of recurrent genomic differences between primary and recurrent tumors harboring 46 candidate genes associated with tumor recurrence. In particular, copy numbers of genes encoding apoptosis regulators were frequently changed at progression. In summary, approximately 25% of IDH1/2 wild-type glioblastoma pairs have stable genomic imbalances. In contrast, approximately 75% of IDH1/2 wild-type glioblastomas undergo further genomic aberrations and alter their clonal composition upon recurrence impacting their genomic profile, a process possibly facilitated by 9p21.3 loss in the primary tumor. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vera Riehmer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Maleszewska M, Steranka A, Kaminska B. The effects of selected inhibitors of histone modifying enzyme on C6 glioma cells. Pharmacol Rep 2014; 66:107-13. [PMID: 24905315 DOI: 10.1016/j.pharep.2013.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/13/2013] [Accepted: 08/20/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Aberrant epigenetic histone modifications are implicated in cancer pathobiology, therefore histone modifying enzymes are emerging targets for anti-cancer therapy. There is a few evidence for deregulation of the histone modifying enzymes in glioblastomas. Glioma treatment is a clinical challenge due to its resistance to current therapies. METHODS The effect of selected inhibitors on epigenetic modifications and viability of glioma C6 cells were studied using immunofluorescence and MTT metabolism test. RESULTS We found that VPA and TSA increase histone H4 acetylation in glioma cells, while chaetocin and BIX01294 at low concentrations reduce H3K9me3, and 3DZNep decreases H3K27me3. Long-term treatment with some epigenetic inhibitors affects viability of glioma cells. CONCLUSIONS We established the concentrations of selected inhibitors which in C6 glioma cells inhibit the enzyme activity, but do not decrease cell viability, hence allow to study the role of histone modifications in C6 glioma biology.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Aleksandra Steranka
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, Warszawa, Poland.
| |
Collapse
|
48
|
Sassi FDA, Caesar L, Jaeger M, Nör C, Abujamra AL, Schwartsmann G, de Farias CB, Brunetto AL, Lopez PLDC, Roesler R. Inhibitory activities of trichostatin a in U87 glioblastoma cells and tumorsphere-derived cells. J Mol Neurosci 2014; 54:27-40. [PMID: 24464841 DOI: 10.1007/s12031-014-0241-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/14/2014] [Indexed: 12/11/2022]
Abstract
Epigenetic alterations have been increasingly implicated in glioblastoma (GBM) pathogenesis, and epigenetic modulators including histone deacetylase inhibitors (HDACis) have been investigated as candidate therapies. GBMs are proposed to contain a subpopulation of glioblastoma stem cells (GSCs) that sustain tumor progression and therapeutic resistance and can form tumorspheres in culture. Here, we investigate the effects of the HDACi trichostatin A (TSA) in U87 GBM cultures and tumorsphere-derived cells. Using approaches that include a novel method to measure tumorsphere sizes and the area covered by spheres in GBM cultures, as well as a nuclear morphometric analysis, we show that TSA reduced proliferation and colony sizes, led to G2/M arrest, induced alterations in nuclear morphology consistent with cell senescence, and increased the protein content of GFAP, but did not affect migration, in cultured human U87 GBM cells. In cells expanded in tumorsphere assays, TSA reduced sphere formation and induced neuron-like morphological changes. The expression of stemness markers in these cells was detected by reverse transcriptase polymerase chain reaction. These findings indicate that HDACis can inhibit proliferation, survival, and tumorsphere formation, and promote differentiation of U87 GBM cells, providing further evidence for the development of HDACis as potential therapeutics against GBM.
Collapse
Affiliation(s)
- Felipe de Almeida Sassi
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
VPA inhibits renal cancer cell migration by targeting HDAC2 and down-regulating HIF-1α. Mol Biol Rep 2014; 41:1511-8. [DOI: 10.1007/s11033-013-2996-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
50
|
Qureshi IA, Mehler MF. Developing epigenetic diagnostics and therapeutics for brain disorders. Trends Mol Med 2013; 19:732-41. [PMID: 24145019 DOI: 10.1016/j.molmed.2013.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/30/2013] [Accepted: 09/19/2013] [Indexed: 12/11/2022]
Abstract
Perturbations in epigenetic mechanisms have emerged as cardinal features in the molecular pathology of major classes of brain disorders. We therefore highlight evidence which suggests that specific epigenetic signatures measurable in central - and possibly even in peripheral tissues - have significant value as translatable biomarkers for screening, early diagnosis, and prognostication; developing molecularly targeted medicines; and monitoring disease progression and treatment responses. We also draw attention to existing and novel therapeutic approaches directed at epigenetic factors and mechanisms, including strategies for modulating enzymes that write and erase DNA methylation and histone/chromatin marks; protein-protein interactions responsible for reading epigenetic marks; and non-coding RNA pathways.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|