1
|
Abdalla H, Storino R, Bandeira A, Teixeira L, Millás A, Lisboa-Filho P, Kantovitz K, Nociti Junior F. Glycogen synthase kinase 3 inhibition enhances mineral nodule formation by cementoblasts in vitro. Braz Oral Res 2023; 37:e112. [PMID: 37970932 DOI: 10.1590/1807-3107bor-2023.vol37.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 11/19/2023] Open
Abstract
This study aimed to investigate whether GSK-3 inhibition (CHIR99021) effectively promoted mineralization by cementoblasts (OCCM-30). OCCM-30 cells were used and treated with different concentrations of CHIR99021 (2.5, 5, and 10 mM). Experiments included proliferation and viability, cellular metabolic activity, gene expression, and mineral nodule formation by Xylene Orange at the experimental time points. In general, CHIR99021 did not significantly affect OCCM-30 viability and cell metabolism (MTT assay) (p > 0.05), but increased OCCM-30 proliferation at 2.5 mM on days 2 and 4 (p < 0.05). Data analysis further showed that inhibition of GSK-3 resulted in increased transcript levels of Axin2 in OCCM-30 cells starting as early as 4 h, and regulated the expression of key bone markers including alkaline phosphatase (Alp), runt-related transcription factor 2 (Runx-2), osteocalcin (Ocn), and osterix (Osx). In addition, CHIR99021 led to an enhanced mineral nodule formation in vitro under both osteogenic and non-osteogenic conditions as early as 5 days after treatment. Altogether, the results of the current study suggest that inhibition of GSK-3 has the potential to promote cementoblast differentiation leading to increased mineral deposition in vitro.
Collapse
Affiliation(s)
- Henrique Abdalla
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Rafael Storino
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Amanda Bandeira
- Universidade José do Rosário Vellano University, School of Dentistry, Department of Periodontics, Varginha, MG, Brazil
| | - Lucas Teixeira
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Ana Millás
- Empresa de Biotecnologia e Soluções 3D, 3D Biotechnology Solutions, Department of Innovation, Campinas, SP, Brazil
| | - Paulo Lisboa-Filho
- Universidade Estadual Paulista, School of Sciences, Department of Physics and Meteorology, Bauru, SP, Brazil
| | - Kamila Kantovitz
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Francisco Nociti Junior
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| |
Collapse
|
2
|
Sangadala S, Kim CH, Fernandes LM, Makkar P, Beck GR, Boden SD, Drissi H, Presciutti SM. Sclerostin small-molecule inhibitors promote osteogenesis by activating canonical Wnt and BMP pathways. eLife 2023; 12:e63402. [PMID: 37560905 PMCID: PMC10431921 DOI: 10.7554/elife.63402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Background The clinical healing environment after a posterior spinal arthrodesis surgery is one of the most clinically challenging bone-healing environments across all orthopedic interventions due to the absence of a contained space and the need to form de novo bone. Our group has previously reported that sclerostin in expressed locally at high levels throughout a developing spinal fusion. However, the role of sclerostin in controlling bone fusion remains to be established. Methods We computationally identified two FDA-approved drugs, as well as a single novel small-molecule drug, for their ability to disrupt the interaction between sclerostin and its receptor, LRP5/6. The drugs were tested in several in vitro biochemical assays using murine MC3T3 and MSCs, assessing their ability to (1) enhance canonical Wnt signaling, (2) promote the accumulation of the active (non-phosphorylated) form of β-catenin, and (3) enhance the intensity and signaling duration of BMP signaling. These drugs were then tested subcutaneously in rats as standalone osteoinductive agents on plain collagen sponges. Finally, the top drug candidates (called VA1 and C07) were tested in a rabbit posterolateral spine fusion model for their ability to achieve a successful fusion at 6 wk. Results We show that by controlling GSK3b phosphorylation our three small-molecule inhibitors (SMIs) simultaneously enhance canonical Wnt signaling and potentiate canonical BMP signaling intensity and duration. We also demonstrate that the SMIs produce dose-dependent ectopic mineralization in vivo in rats as well as significantly increase posterolateral spine fusion rates in rabbits in vivo, both as standalone osteogenic drugs and in combination with autologous iliac crest bone graft. Conclusions Few if any osteogenic small molecules possess the osteoinductive potency of BMP itself - that is, the ability to form de novo ectopic bone as a standalone agent. Herein, we describe two such SMIs that have this unique ability and were shown to induce de novo bone in a stringent in vivo environment. These SMIs may have the potential to be used in novel, cost-effective bone graft substitutes for either achieving spinal fusion or in the healing of critical-sized fracture defects. Funding This work was supported by a Veteran Affairs Career Development Award (IK2-BX003845).
Collapse
Affiliation(s)
- Sreedhara Sangadala
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Chi Heon Kim
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Lorenzo M Fernandes
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Pooja Makkar
- Department of Biotechnology, Panjab UniversityChandigarhIndia
| | - George R Beck
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Emory University, Division of EndocrinologyAtlantaUnited States
| | - Scott D Boden
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Steven M Presciutti
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
3
|
Chitwood JR, Chakraborty N, Hammamieh R, Moe SM, Chen NX, Kacena MA, Natoli RM. Predicting fracture healing with blood biomarkers: the potential to assess patient risk of fracture nonunion. Biomarkers 2021; 26:703-717. [PMID: 34555995 DOI: 10.1080/1354750x.2021.1985171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fracture non-union is a significant orthopaedic problem affecting a substantial number of patients yearly. Treatment of nonunions is devastating to patients and costly to the healthcare system. Unfortunately, the diagnosis of non-union is typically made in a reactionary fashion by an orthopaedic surgeon based on clinical assessment and radiographic features several months into treatment. For this reason, investigators have been trying to develop prediction algorithms; however, these have relied on population-based approaches and lack the predictive capability necessary to make individual treatment decisions. There is also a growing body of literature focussed on identifying blood biomarkers that are associated with non-union. This review describes the research that has been done in this area. Further studies of patient-centered, precision medicine approaches will likely improve fracture non-union diagnostic/prognostic capabilities.
Collapse
Affiliation(s)
- Joseph R Chitwood
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neal X Chen
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Rodriguez‐Feo J, Fernandes L, Patel A, Doan T, Boden SD, Drissi H, Presciutti SM. The temporal and spatial expression of sclerostin and Wnt signaling factors during the maturation of posterolateral lumbar spine fusions. JOR Spine 2021; 4:e1100. [PMID: 33778403 PMCID: PMC7984013 DOI: 10.1002/jsp2.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 11/23/2022] Open
Abstract
The bone healing environment in the posterolateral spine following arthrodesis surgery is one of the most challenging in all of orthopedics and our understanding of the molecular signaling pathways mediating osteogenesis during spinal fusion is limited. In this study, the spatial and temporal expression pattern of Wnt signaling factors and inhibitors during spinal fusion was assessed for the first time. Bilateral posterolateral spine arthrodesis with autologous iliac crest bone graft was performed on 21 New Zealand White rabbits. At 1-, 2-, 3-, 4-, and 6-weeks, the expression of sclerostin and a variety of canonical and noncanonical Wnts signaling factors was measured by qRT-PCR from tissue separately collected from the transverse processes, the Outer and Inner Zones of the fusion mass, and the adjancent paraspinal muscle. Immunohistochemistry for sclerostin protein was also performed. Sclerostin and many Wnt factors, especially Wnt3a and Wnt5a, were found to have distinct spatial and temporal expression patterns. For example, harvesting ICBG caused a significant increase in sclerostin expression. Furthermore, the paraspinal muscle immediately adjacent to the transplanted ICBG also had significant increases in sclerostin expression at 3 weeks, suggesting new potential mechanisms for pseudarthroses following spinal arthrodesis. The presented work is the first description of the spatial and temporal expression of sclerostin and Wnt signaling factors in the developing spine fusion, filling an important knowledge gap in the basic biology of spinal fusion and potentially aiding in the development of novel biologics to increase spinal fusion rates.
Collapse
Affiliation(s)
| | - Lorenzo Fernandes
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
- Atlanta Veteran Affairs Medical CenterDecaturGeorgiaUSA
| | - Anuj Patel
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
| | - Thanh Doan
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
| | - Scott D. Boden
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
| | - Hicham Drissi
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
- Atlanta Veteran Affairs Medical CenterDecaturGeorgiaUSA
| | - Steven M. Presciutti
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
- Atlanta Veteran Affairs Medical CenterDecaturGeorgiaUSA
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Substantial advances have been made in understanding the biological basis of fracture healing. Yet, it is unclear whether the presence of osteoporosis or prior or current osteoporosis therapy influences the healing process or is associated with impaired healing. This review discusses the normal process of fracture healing and the role of osteoporosis and patient-specific factors in relation to fracture repair. RECENT FINDINGS The definitive association of osteoporosis to impaired fracture healing remains inconclusive because of limited evidence addressing this point. eStudies testing anabolic agents in preclinical models of ovariectomized animals with induced fractures have produced mostly positive findings showing enhanced fracture repair. Prospective human clinical trials, although few in number and limited in design and to testing only one anabolic agent, have similarly yielded modestly favorable results. Interest is high for exploring currently available osteoporosis therapies for efficacy in fracture repair. Definitive data supporting their efficacy are essential in achieving approval for this indication.
Collapse
Affiliation(s)
- Cheng Cheng
- Endocrine Research Unit, Department of Medicine, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, Room 369, San Francisco, CA, 94158, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, USA
| | - Dolores Shoback
- Endocrine Research Unit, Department of Medicine, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, Room 369, San Francisco, CA, 94158, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, USA.
| |
Collapse
|
6
|
Alzahrani MM, Rauch F, Hamdy RC. Does Sclerostin Depletion Stimulate Fracture Healing in a Mouse Model? Clin Orthop Relat Res 2016; 474:1294-302. [PMID: 26608966 PMCID: PMC4814400 DOI: 10.1007/s11999-015-4640-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/13/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sclerostin is a secreted glycoprotein that inhibits the intracellular Wnt signaling pathway, which, when inactivated, stimulates bone formation. This has been seen in fracture studies, which have shown larger and stronger calluses with accelerated fracture healing in sclerostin knockout and sclerostin antibody injection models. However, the effects of these two mechanisms have not been compared in the context of fracture healing. QUESTIONS/PURPOSES We sought to determine the degree to which sclerostin inhibition (Scl-Ab injection) and complete sclerostin depletion inhibit fracture healing in a mouse model as evaluated by (1) morphometric trabecular bone measures at the fracture site, and (2) fracture site structural strength. METHODS Ten-week-old male sclerostin knockout (n = 20) and wild type (n = 40) mice underwent insertion of a tibial intramedullary pin after which a midshaft tibial osteotomy was performed. The mice were divided in three groups: sclerostin knockout (n = 20), wild type with sclerostin antibody injection (intravenous dose of 100 mg/kg weekly) (n = 20), and wild type with saline injection (n = 20). The mice for each group where subdivided and euthanized at 14, 21, 28, and 35 days after surgery, at which time the fractured tibias were assessed with microCT (to assess morphometric trabecular bone measures: bone volume to total volume (BV/TV), trabecular thickness, trabecular number, and structural model index at the fracture site. Biomechanical testing in the form of three-point bending also was done to assess fracture site structural strength. A difference greater than 3.7% in our primary outcome (BV/TV) would be required to detect a difference between groups with a power of 80%, as per our power analysis. RESULTS The wild type with sclerostin antibody and the sclerostin knockout groups showed increased trabecular BV/TV at the fracture site compared with the wild type group with saline at all times, however no difference was seen between the treatment groups with the numbers available, except at 28 days postoperatively when the sclerostin knockout group showed greater BV/TV than the wild type sclerostin antibody group (47.0 ± 3.5 vs 40.1 ± 2.1; p < 0.05). On biomechanical testing the wild type sclerostin antibody showed increased stiffness at Days 14 and 28 compared with the wild type with saline group (70.9 ± 6.4 vs 14.8 ± 8.1; p = 0.001), (106.8 ± 24.3 vs 74.9 ± 16.0; p = 0.004); respectively. However, with the numbers available, no differences were detected between the wild type with sclerostin antibody and the sclerostin knockout groups in terms of whole-bone structural strength. CONCLUSIONS Sclerostin antibody injections showed promising results, which were not different with the numbers available, from results achieved with complete depletion of sclerostin, especially at earlier stages of the healing process, and therefore completed the healing process at an earlier time. CLINICAL RELEVANCE Sclerostin antibody injections appear to enhance fracture healing to a degree that is not different than complete sclerostin depletion, but larger animal studies are required to assess the accurate dosage and timing of administration in the fracture healing process to further evaluate its potential clinical utility to enhance fracture healing.
Collapse
Affiliation(s)
- Mohammad M. Alzahrani
- grid.416084.f000000010350814XShriners Hospital for Children, Montreal Children’s Hospital, Montreal, QC Canada ,grid.14709.3b0000000419368649Division of Orthopaedic Surgery, McGill University, Montreal, QC Canada ,grid.411975.f000000040607035XDepartment of Orthopaedic Surgery, University of Dammam, Dammam, Saudi Arabia ,1529 Cedar Avenue, Montreal, QC H3G 1A6 Canada
| | - Frank Rauch
- grid.416084.f000000010350814XShriners Hospital for Children, Montreal Children’s Hospital, Montreal, QC Canada
| | - Reggie C. Hamdy
- grid.416084.f000000010350814XShriners Hospital for Children, Montreal Children’s Hospital, Montreal, QC Canada ,grid.14709.3b0000000419368649Division of Orthopaedic Surgery, McGill University, Montreal, QC Canada
| |
Collapse
|
7
|
E. Klontzas M, I. Kenanidis E, J. MacFarlane R, Michail T, E. Potoupnis M, Heliotis M, Mantalaris A, Tsiridis E. Investigational drugs for fracture healing: preclinical & clinical data. Expert Opin Investig Drugs 2016; 25:585-96. [DOI: 10.1517/13543784.2016.1161757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Xu H, Duan J, Ning D, Li J, Liu R, Yang R, Jiang JX, Shang P. Role of Wnt signaling in fracture healing. BMB Rep 2015; 47:666-72. [PMID: 25301020 PMCID: PMC4345510 DOI: 10.5483/bmbrep.2014.47.12.193] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 01/08/2023] Open
Abstract
The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair. [BMB Reports 2014; 47(12): 666-672]
Collapse
Affiliation(s)
- Huiyun Xu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jing Duan
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Dandan Ning
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jingbao Li
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Ruofei Liu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Ruixin Yang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas 78229, the United States
| | - Peng Shang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| |
Collapse
|
9
|
Han P, Ivanovski S, Crawford R, Xiao Y. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration. J Bone Miner Res 2015; 30:1160-74. [PMID: 25556853 DOI: 10.1002/jbmr.2445] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/22/2022]
Abstract
Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs.
Collapse
Affiliation(s)
- Pingping Han
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health, Centre for Medicine and Oral Health, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Intini G, Nyman JS. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity. Bone 2015; 75:151-60. [PMID: 25603465 PMCID: PMC4387090 DOI: 10.1016/j.bone.2015.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/09/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Abstract
Bone fractures remain a serious health burden and prevention and enhanced healing of fractures have been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1(+/-)) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2(c/c);Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1(+/-) mice were crossed with Bmp2(c/c);Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy.
Collapse
Affiliation(s)
- Giuseppe Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA.
| | - Jeffry S Nyman
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
11
|
Rochefort GY. The osteocyte as a therapeutic target in the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2014; 6:79-91. [PMID: 24891879 DOI: 10.1177/1759720x14523500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is characterized by a low bone-mineral density associated with skeletal fractures. The decrease in bone-mineral density is the consequence of an unbalanced bone-remodeling process, with higher bone resorption than bone formation. The orchestration of the bone-remodeling process is under the control of the most abundant cell in bone, the osteocyte. Functioning as an endocrine cell, osteocytes are also a source of soluble factors that not only target cells on the bone surface, but also target distant organs. Therefore, any drugs targeting the osteocyte functions and signaling pathways will have a major impact on the bone-remodeling process. This review discusses potential advances in drug therapy for osteoporosis, including novel osteocyte-related antiresorptive and anabolic agents that may become available in the coming years.
Collapse
Affiliation(s)
- Gaël Y Rochefort
- EA 2496, Faculté de Chirurgie Dentaire, Université Paris Descartes, 1 rue Maurice Arnoux, 92120 Montrouge, France
| |
Collapse
|
12
|
Sheng MHC, Lau KHW, Baylink DJ. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone. J Bone Metab 2014; 21:41-54. [PMID: 24707466 PMCID: PMC3970294 DOI: 10.11005/jbm.2014.21.1.41] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/22/2023] Open
Abstract
The osteocyte has long been considered to be the primary mechanosensory cell in the bone. Recent evidence has emerged that the osteocyte is also a key regulator of various bone and mineral metabolism and that its regulatory effects are in part mediated through locally produced osteocyte-derived factors, such as sclerostin, receptor activator of nuclear factor-kappa B ligand (RANKL), and fibroblast growth factor (FGF)-23. Osteocytes secrete large amounts of insulin-like growth factor (IGF)-I in bone. Although IGF-I produced locally by other bone cells, such as osteoblasts and chondrocytes, has been shown to play important regulatory roles in bone turnover and developmental bone growth, the functional role of osteocyte-derived IGF-I in the bone and mineral metabolism has not been investigated and remains unclear. However, results of recent studies in osteocyte Igf1 conditional knockout transgenic mice have suggested potential regulatory roles of osteocyte-derived IGF-I in various aspects of bone and mineral metabolism. In this review, evidence supporting a regulatory role for osteocyte-derived IGF-I in the osteogenic response to mechanical loading, the developmental bone growth, the bone response to dietary calcium depletion and repletion, and in fracture repair is discussed. A potential coordinated regulatory relationship between the effect of osteocyte-derived IGF-I on bone size and the internal organ size is also proposed.
Collapse
Affiliation(s)
- Matilda H C Sheng
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - K H William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA. ; Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
13
|
Cottrell JA, Keshav V, Mitchell A, O'Connor JP. Local inhibition of 5-lipoxygenase enhances bone formation in a rat model. Bone Joint Res 2013; 2:41-50. [PMID: 23610701 PMCID: PMC3626215 DOI: 10.1302/2046-3758.22.2000066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022] Open
Abstract
Objectives Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Methods Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed in
vitro. Osteogenesis was assessed by micro-CT and histology
at two endpoints of ten and 30 days. Results Using micro-CT, we found that A-79175, a 5-LO inhibitor, increased
bone formation in an apparent dose-related manner. Conclusions These results indicate that 5-LO inhibition could be used therapeutically
to enhance treatments that require the direct formation of bone.
Collapse
Affiliation(s)
- J A Cottrell
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Biochemistry & Molecular Biology, Newark, New Jersey, USA
| | | | | | | |
Collapse
|