1
|
Gascón-Giménez F, Alcalá C, Ramió-Torrentà L, Montero P, Matías-Guiu J, Gómez-Esteve I, Oreja-Guevara C, Gil-Perotín S, Blanco Y, Carcelén M, Quintanilla-Bordás C, Costa L, Villar LM, Martínez-Rodriguez JE, Domínguez JA, Calles C, González I, Sotoca J, Oterino A, Lucas-Jimenez C, Pérez-Miralles F, Casanova B. Treatment of multiple sclerosis with rituximab: A Spanish multicenter experience. Front Neurol 2023; 14:1060696. [PMID: 36959824 PMCID: PMC10027934 DOI: 10.3389/fneur.2023.1060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/09/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Rituximab (RTX) is considered a potential therapeutic option for relapsing-remitting (RRMS) and progressive forms (PMS) of multiple sclerosis (MS). The main objective of this work was to investigate the effectiveness and safety of rituximab in MS. Patients and methods Observational multicenter study of clinical and radiological effectiveness and safety of rituximab in RRMS and PMS. Results A total of 479 rituximab-treated patients were included in 12 Spanish centers, 188 RRMS (39.3%) and 291 (60.7%) PMS. Despite standard treatment, the annualized relapse rate (ARR) the year before RTX was 0.63 (SD: 0.8) and 156 patients (41%) had at least one gadolinium-enhanced lesion (GEL) on baseline MRI. Mean EDSS had increased from 4.3 (SD: 1.9) to 4.8 (SD: 1.7) and almost half of the patients (41%) had worsened at least one point. After a median follow-up of 14.2 months (IQR: 6.5-27.2), ARR decreased by 85.7% (p < 0.001) and GEL by 82.9%, from 0.41 to 0.07 (p < 0.001). A significant decrease in EDSS to 4.7 (p = 0.046) was observed after 1 year of treatment and this variable remained stable during the second year of therapy. There was no evidence of disease activity in 68% of patients. Infusion-related symptoms were the most frequent side effect (19.6%) and most were mild. Relevant infections were reported only in 18 patients (including one case of probable progressive multifocal leukoencephalopathy). Conclusion Rituximab could be an effective and safe treatment in RRMS, including aggressive forms of the disease. Some selected PMS patients could also benefit from this treatment.
Collapse
Affiliation(s)
- Francisco Gascón-Giménez
- Neuroimmunology Unit, Neurology Department, Hospital Clinico Universitario, Valencia, Spain
- *Correspondence: Francisco Gascón-Giménez
| | - Carmen Alcalá
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - Paloma Montero
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain
| | - Irene Gómez-Esteve
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain
| | | | - Sara Gil-Perotín
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Yolanda Blanco
- Neurology Department, Clinical Hospital of Barcelona, Barcelona, Spain
| | - María Carcelén
- Neurology Department, General University Hospital of Valencia, Valencia, Spain
| | | | - Lucienne Costa
- Neurology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | | | | | - José Andrés Domínguez
- Neuroimmunology Unit, Neurology Department, Hospital Clinico Universitario, Valencia, Spain
| | - Carmen Calles
- Neurology Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Inés González
- Neurology Department, Álvaro Cunqueiro Hospital, Vigo, Spain
| | - Javier Sotoca
- Neurology Department, Mutua de Terrasssa University Hospital, Barcelona, Spain
| | - Agustin Oterino
- Neurology Department, Marqués de Valdecilla University Hospital, Santander, Spain
| | - Celia Lucas-Jimenez
- Systems and Applications Engineer Department, Subdirectorate of Information Systems Hospital La Fe, Valencia, Spain
| | | | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
2
|
Costantini E, Masciarelli E, Casorri L, Di Luigi M, Reale M. Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategy and occupational health risk. Front Cell Neurosci 2022; 16:985943. [PMID: 36439198 PMCID: PMC9688751 DOI: 10.3389/fncel.2022.985943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and axonal loss of the central nervous system (CNS). Despite its spread throughout the world, the mechanisms that determine its onset are still to be defined. Immunological, genetic, viral, and environmental factors and exposure to chemicals may trigger MS. Many studies have highlighted the anti-inflammatory and anti-oxidant effects of medicinal herbs, which make them a natural and complementary treatment for neurodegenerative diseases. A severe reduction of several MS symptoms occurs with herbal therapy. Thus, the request for medicinal plants with potential beneficial effects, for MS patients, is constantly increasing. Consequently, a production increase needs. Unfortunately, many medicinal herbs were untested and their action mechanism, possible adverse effects, contraindications, or interactions with other drugs, are poorly or not investigated. Keeping in mind the pathological mechanisms of MS and the oxidative damages and mitochondrial dysfunctions induced by pesticides, it is important to understand if pesticides used to increase agricultural productivity and their residues in medicinal plants, may increase the risk of developing MS in both workers and consumers. Studies providing some indication about the relationship between environmental exposure to pesticides and MS disease incidence are few, fragmentary, and discordant. The aim of this article is to provide a glance at the therapeutic potential of medicinal plants and at the risk for MS onset of pesticides used by medicinal plant growers and present in medicinal herbs.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research Center, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
- *Correspondence: Marcella Reale,
| |
Collapse
|
3
|
Barazesh M, Mohammadi S, Bahrami Y, Mokarram P, Morowvat MH, Saidijam M, Karimipoor M, Kavousipour S, Vosoughi AR, Khanaki K. CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Curr Gene Ther 2021; 21:130-148. [PMID: 33319680 DOI: 10.2174/1566523220666201214115024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent. OBJECTIVE Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals, especially non-human primates (NHPs), are remarkably similar to humans; hence, they establish suitable models for recapitulating the main human's neuropathological manifestations that may not be seen in rodent models. In addition, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior. METHODS In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explaining in vivo CRISPR-Cas9 delivery procedures that are applied to disease models for therapeutic purposes. RESULTS With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without the need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders. CONCLUSION Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khoram Abad, Iran
| | - Yadollah Bahrami
- Molecular Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooneh Mokarram
- Autophagy Research center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Reza Vosoughi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Korosh Khanaki
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Martin E, Aigrot MS, Grenningloh R, Stankoff B, Lubetzki C, Boschert U, Zalc B. Bruton's Tyrosine Kinase Inhibition Promotes Myelin Repair. Brain Plast 2020; 5:123-133. [PMID: 33282676 PMCID: PMC7685672 DOI: 10.3233/bpl-200100] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Microglia are the resident macrophages of the central nervous system (CNS). In multiple sclerosis (MS) and related experimental models, microglia have either a pro-inflammatory or a pro-regenerative/pro-remyelinating function. Inhibition of Bruton’s tyrosine kinase (BTK), a member of the Tec family of kinases, has been shown to block differentiation of pro-inflammatory macrophages in response to granulocyte–macrophage colony-stimulating factor in vitro. However, the role of BTK in the CNS is unknown. Methods: Our aim was to investigate the effect of BTK inhibition on myelin repair in ex vivo and in vivo experimental models of demyelination and remyelination. The remyelination effect of a BTK inhibitor (BTKi; BTKi-1) was then investigated in LPC-induced demyelinated cerebellar organotypic slice cultures and metronidazole-induced demyelinated Xenopus MBP-GFP-NTR transgenic tadpoles. Results: Cellular detection of BTK and its activated form BTK-phospho-Y223 (p-BTK) was determined by immunohistochemistry in organotypic cerebellar slice cultures, before and after lysophosphatidylcholine (LPC)-induced demyelination. A low BTK signal detected by immunolabeling under normal conditions in cerebellar slices was in sharp contrast to an 8.5-fold increase in the number of BTK-positive cells observed in LPC-demyelinated slice cultures. Under both conditions, approximately 75% of cells expressing BTK and p-BTK were microglia and 25% were astrocytes. Compared with spontaneous recovery, treatment of demyelinated slice cultures and MTZ-demyelinated transgenic tadpoles with BTKi resulted in at least a 1.7-fold improvement of remyelination. Conclusion: Our data demonstrate that BTK inhibition is a promising therapeutic strategy for myelin repair.
Collapse
Affiliation(s)
- Elodie Martin
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Marie-Stéphane Aigrot
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Roland Grenningloh
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States (a business of Merck KGaA, Darmstadt, Germany)
| | - Bruno Stankoff
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Saint-Antoine Hospital, F-75012 Paris, France
| | - Catherine Lubetzki
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Ursula Boschert
- Ares Trading S.A. an affiliate of Merck Serono S.A., Eysins, Switzerland
| | - Bernard Zalc
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
5
|
Yang S, Li H, Xu L, Deng Z, Han W, Liu Y, Jiang W, Zu Y. Oligonucleotide Aptamer-Mediated Precision Therapy of Hematological Malignancies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:164-175. [PMID: 30292138 PMCID: PMC6172475 DOI: 10.1016/j.omtn.2018.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023]
Abstract
Precision medicine has recently emerged as a promising strategy for cancer therapy because it not only specifically targets cancer cells but it also does not have adverse effects on normal cells. Oligonucleotide aptamers are a class of small molecule ligands that can specifically bind to their targets on cell surfaces with high affinity. Aptamers have great potential in precision cancer therapy due to their unique physical, chemical, and biological properties. Therefore, aptamer technology has been widely investigated for biomedical and clinical applications. This review focuses on the potential applications of aptamer technology as a new tool for precision treatment of hematological malignancies, including leukemia, lymphoma, and multiple myeloma.
Collapse
Affiliation(s)
- Shuanghui Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Huan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ling Xu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhenhan Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wei Han
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yanting Liu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Wenqi Jiang
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Feng JJ, Ontaneda D. Treating primary-progressive multiple sclerosis: potential of ocrelizumab and review of B-cell therapies. Degener Neurol Neuromuscul Dis 2017; 7:31-45. [PMID: 30050376 PMCID: PMC6053100 DOI: 10.2147/dnnd.s100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) therapy has evolved rapidly with an increased availability of several immunomodulating therapies over the past two decades. Disease-modifying therapies have proven to be effective in treating relapse-remitting MS (RRMS). However, clinical trials involving some of the same agents for secondary-progressive and primary-progressive MS (SPMS and PPMS) have been largely negative. The pathogenesis of progressive MS remains unclear, but B-cells may play a significant role in chronic compartmentalized inflammation, likely contributing to disease progression. Biologics targeted at B-cells, such as rituximab, are effective in treating RRMS. Ocrelizumab is a humanized monoclonal antibody to CD20+ B-cells that has shown positive results in PPMS with a significant reduction in disease progression. This review aims to discuss in detail the involvement of B-cells in MS pathogenesis, current progress of currently available and investigational biologics, with focus on ocrelizumab, and future prospects for B-cell therapy in PPMS.
Collapse
Affiliation(s)
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA,
| |
Collapse
|
7
|
Wu C, Wan W, Zhu J, Jin H, Zhao T, Li H. Induction of potent apoptosis by an anti-CD20 aptamer via the crosslink of membrane CD20 on non-Hodgkin's lymphoma cells. RSC Adv 2017. [DOI: 10.1039/c6ra27154e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An anti-CD20 DNA aptamer was successfully generated by cell-SELEX, the crosslink of which can induce potent apoptosis in target cells.
Collapse
Affiliation(s)
- Cong Wu
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Wei Wan
- Department of Orthopedic Oncology
- Spine Tumor Center
- Changzheng Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Ji Zhu
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Hai Jin
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Tiejun Zhao
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Huafei Li
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
- International Joint Cancer Institute
| |
Collapse
|
8
|
|
9
|
Guptill JT, Soni M, Meriggioli MN. Current Treatment, Emerging Translational Therapies, and New Therapeutic Targets for Autoimmune Myasthenia Gravis. Neurotherapeutics 2016; 13:118-31. [PMID: 26510558 PMCID: PMC4720661 DOI: 10.1007/s13311-015-0398-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease associated with the production of autoantibodies against 1) the skeletal muscle acetylcholine receptor; 2) muscle-specific kinase, a receptor tyrosine kinase critical for the maintenance of neuromuscular synapses; 3) low-density lipoprotein receptor-related protein 4, an important molecular binding partner for muscle-specific kinase; and 4) other muscle endplate proteins. In addition to the profile of autoantibodies, MG may be classified according the location of the affected muscles (ocular vs generalized), the age of symptom onset, and the nature of thymic pathology. Immunopathologic events leading to the production of autoantibodies differ in the various disease subtypes. Advances in our knowledge of the immunopathogenesis of the subtypes of MG will allow for directed utilization of the ever-growing repertoire of therapeutic agents that target distinct nodes in the immune pathway relevant to the initiation and maintenance of autoimmune disease. In this review, we examine the pathogenesis of MG subtypes, current treatment options, and emerging new treatments and therapeutic targets.
Collapse
Affiliation(s)
- Jeffrey T Guptill
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Madhu Soni
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Matthew N Meriggioli
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
10
|
Russi AE, Brown MA. The meninges: new therapeutic targets for multiple sclerosis. Transl Res 2015; 165:255-69. [PMID: 25241937 PMCID: PMC4424790 DOI: 10.1016/j.trsl.2014.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments.
Collapse
Affiliation(s)
- Abigail E Russi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|