1
|
Ni R, Cai L, Xing Y, Fan X. The Effects of Respiratory Training Combined with Limb Exercise on Pulmonary Function and Quality of Life in Patients with Bronchiectasis. J Multidiscip Healthc 2023; 16:475-482. [PMID: 36861133 PMCID: PMC9968867 DOI: 10.2147/jmdh.s388944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
Objective To investigate the effects of respiratory rehabilitation training combined with limb rehabilitation on sputum clearance and quality of life in patients with bronchiectasis. Methods A retrospective analysis of 86 patients with bronchiectasis was divided into an intervention group and an observation group, with 43 cases in each group. All patients were above 18 years of age with no history of relevant drug allergies. Patients in the observation group were treated with conventional drugs, and those in the intervention group were given respiratory rehabilitation training and limb rehabilitation on this basis. After three months of treatment, the indexes of sputum discharge, sputum traits, lung function, and the 6-minute walk distance (6MWD) were compared and quality of life and survival skills were assessed using the Barthel index and a quality-of-life comprehensive assessment questionnaire (GQOLI-74). Results The percentage of patients with mild Barthel index in the intervention group was higher than that in the observation group, and the difference between the groups was statistically significant (P < 0.05). After treatment, the scores of life quality and the lung function in the intervention group were higher than those in the observation group (both P < 0.05). After three months of treatment, the sputum volume and sputum viscosity scores of the two groups were higher than those before treatment (P < 0.05). Conclusion Respiratory rehabilitation training with limb exercise rehabilitation can effectively improve the sputum clearance rate, lung function, and quality of life of patients with bronchiectasis and is thus worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Rongping Ni
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, AnhuiPeople’s Republic of China
| | - Lizhang Cai
- Department of Respiratory, Shanghai Nanxiang Hospital, Shanghai, People’s Republic of China
| | - Yingru Xing
- Department of Clinical Laboratory, Huainan Oriental Hospital Group of Anhui University of Science and Technology, Huainan, AnhuiPeople’s Republic of China
| | - Xiaoyun Fan
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, AnhuiPeople’s Republic of China,Correspondence: Xiaoyun Fan, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People’s Republic of China, Tel +86 13956988552, Email
| |
Collapse
|
2
|
Zatloukal J, Brat K, Neumannova K, Volakova E, Hejduk K, Kocova E, Kudela O, Kopecky M, Plutinsky M, Koblizek V. Chronic obstructive pulmonary disease - diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:325-356. [PMID: 33325455 DOI: 10.5507/bp.2020.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
This position paper has been drafted by experts from the Czech national board of diseases with bronchial obstruction, of the Czech Pneumological and Phthisiological Society. The statements and recommendations are based on both the results of randomized controlled trials and data from cross-sectional and prospective real-life studies to ensure they are as close as possible to the context of daily clinical practice and the current health care system of the Czech Republic. Chronic Obstructive Pulmonary Disease (COPD) is a preventable and treatable heterogeneous syndrome with a number of pulmonary and extrapulmonary clinical features and concomitant chronic diseases. The disease is associated with significant mortality, morbidity and reduced quality of life. The main characteristics include persistent respiratory symptoms and only partially reversible airflow obstruction developing due to an abnormal inflammatory response of the lungs to noxious particles and gases. Oxidative stress, protease-antiprotease imbalance and increased numbers of pro-inflammatory cells (mainly neutrophils) are the main drivers of primarily non-infectious inflammation in COPD. Besides smoking, household air pollution, occupational exposure, low birth weight, frequent respiratory infections during childhood and also genetic factors are important risk factors of COPD development. Progressive airflow limitation and airway remodelling leads to air trapping, static and dynamic hyperinflation, gas exchange abnormalities and decreased exercise capacity. Various features of the disease are expressed unequally in individual patients, resulting in various types of disease presentation, emerging as the "clinical phenotypes" (for specific clinical characteristics) and "treatable traits" (for treatable characteristics) concept. The estimated prevalence of COPD in Czechia is around 6.7% with 3,200-3,500 deaths reported annually. The elementary requirements for diagnosis of COPD are spirometric confirmation of post-bronchodilator airflow obstruction (post-BD FEV1/VCmax <70%) and respiratory symptoms assessement (dyspnoea, exercise limitation, cough and/or sputum production. In order to establish definite COPD diagnosis, a five-step evaluation should be performed, including: 1/ inhalation risk assessment, 2/ symptoms evaluation, 3/ lung function tests, 4/ laboratory tests and 5/ imaging. At the same time, all alternative diagnoses should be excluded. For disease classification, this position paper uses both GOLD stages (1 to 4), GOLD groups (A to D) and evaluation of clinical phenotype(s). Prognosis assessment should be done in each patient. For this purpose, we recommend the use of the BODE or the CADOT index. Six elementary clinical phenotypes are recognized, including chronic bronchitis, frequent exacerbator, emphysematous, asthma/COPD overlap (ACO), bronchiectases with COPD overlap (BCO) and pulmonary cachexia. In our concept, all of these clinical phenotypes are also considered independent treatable traits. For each treatable trait, specific pharmacological and non-pharmacological therapies are defined in this document. The coincidence of two or more clinical phenotypes (i.e., treatable traits) may occur in a single individual, giving the opportunity of fully individualized, phenotype-specific treatment. Treatment of COPD should reflect the complexity and heterogeneity of the disease and be tailored to individual patients. Major goals of COPD treatment are symptom reduction and decreased exacerbation risk. Treatment strategy is divided into five strata: risk elimination, basic treatment, phenotype-specific treatment, treatment of respiratory failure and palliative care, and treatment of comorbidities. Risk elimination includes interventions against tobacco smoking and environmental/occupational exposures. Basic treatment is based on bronchodilator therapy, pulmonary rehabilitation, vaccination, care for appropriate nutrition, inhalation training, education and psychosocial support. Adequate phenotype-specific treatment varies phenotype by phenotype, including more than ten different pharmacological and non-pharmacological strategies. If more than one clinical phenotype is present, treatment strategy should follow the expression of each phenotypic label separately. In such patients, multicomponental therapeutic regimens are needed, resulting in fully individualized care. In the future, stronger measures against smoking, improvements in occupational and environmental health, early diagnosis strategies, as well as biomarker identification for patients responsive to specific treatments are warranted. New classes of treatment (inhaled PDE3/4 inhibitors, single molecule dual bronchodilators, anti-inflammatory drugs, gene editing molecules or new bronchoscopic procedures) are expected to enter the clinical practice in a very few years.
Collapse
Affiliation(s)
- Jaromir Zatloukal
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Kristian Brat
- Department of Respiratory Diseases, University Hospital Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Neumannova
- Department of Physiotherapy, Faculty of Physical Culture, Palacky University Olomouc, Czech Republic
| | - Eva Volakova
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Karel Hejduk
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,National Screening Centre, Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Eva Kocova
- Department of Radiology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ondrej Kudela
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Michal Kopecky
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Marek Plutinsky
- Department of Respiratory Diseases, University Hospital Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimir Koblizek
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Fjaellegaard K, Sin MD, Browatzki A, Ulrik CS. Antibiotic therapy for stable non-CF bronchiectasis in adults - A systematic review. Chron Respir Dis 2016; 14:174-186. [PMID: 27507832 DOI: 10.1177/1479972316661923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To provide an update on efficacy and safety of antibiotic treatments for stable non-cystic fibrosis (CF) bronchiectasis (BE). Systematic review based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines was done. Twenty-six studies (1.898 patients) fulfilled the inclusion criteria. Studies of inhaled tobramycin have revealed conflicting results regarding quality of life (QoL), exacerbations and admissions, but may result in sputum cultures negative for Pseudomonas aeruginosa, whereas studies investigating the effect of inhaled gentamycin have shown positive effects on sputum bacterial density, decrease in sputum cultures positive for P. aeruginosa, QoL and exacerbation rate, but no improvement in forced expiratory volume in first second (FEV1). Oral azithromycin can reduce exacerbations, together with minor improvements in QoL and FEV1. Furthermore, oral erythromycin reduces exacerbations, but has no effect on lung function, symptoms or QoL. Inhaled ciprofloxacin may reduce P. aeruginosa in sputum cultures, but without changes in lung function, exacerbations or QoL. Although with limited evidence, inhaled colistin may have effects on P. aeruginosa density, exacerbations and QoL, whereas studies on aztreonam revealed no significant clinical improvements in the outcomes of interest, including exacerbation rate. Adverse events, including bronchospasm, have been reported in association with tobramycin and aztreonam. Several antibiotic treatment regimens have been shown to improve QoL and exacerbation rate, whereas findings regarding sputum production, lung function and admissions have been conflicting. Evidence-based treatment algorithms for antibiotic treatment of stable non-CF BE will have to await large-scale, long-term controlled studies.
Collapse
Affiliation(s)
| | - Melda Dönmez Sin
- 1 Department of Pulmonary Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - Andrea Browatzki
- 2 Department of Infectious Disease and Pulmonary Medicine, Nordsjællands Hospital, Hillerod, Denmark
| | - Charlotte Suppli Ulrik
- 1 Department of Pulmonary Medicine, Hvidovre Hospital, Hvidovre, Denmark.,3 University of Copenhagen, København, Denmark
| |
Collapse
|
6
|
Boyton RJ, Altmann DM. Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:523-54. [PMID: 26980162 DOI: 10.1146/annurev-pathol-012615-044344] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bronchiectasis is a disorder of persistent lung inflammation and recurrent infection, defined by a common pathological end point: irreversible bronchial dilatation arrived at through diverse etiologies. This suggests an interplay between immunogenetic susceptibility, immune dysregulation, bacterial infection, and lung damage. The damaged epithelium impairs mucus removal and facilitates bacterial infection with increased cough, sputum production, and airflow obstruction. Lung infection is caused by respiratory bacterial and fungal pathogens, including Pseudomonas aeruginosa, Haemophilus, Aspergillus fumigatus, and nontuberculous mycobacteria. Recent studies have highlighted the relationship between the lung microbiota and microbial-pathogen niches. Disease may result from environments favoring interleukin-17-driven neutrophilia. Bronchiectasis may present in autoimmune disease, as well as conditions of immune dysregulation, such as combined variable immune deficiency, transporter associated with antigen processing-deficiency syndrome, and hyperimmunoglobulin E syndrome. Differences in prevalence across geography and ethnicity implicate an etiological mix of genetics and environment underpinning susceptibility.
Collapse
Affiliation(s)
- Rosemary J Boyton
- Lung Immunology Group, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; .,Department of Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London SW3 6NP, United Kingdom
| | - Daniel M Altmann
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|