1
|
Patton GN, Lee HJ. Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches. Pharmaceutics 2024; 16:274. [PMID: 38399328 PMCID: PMC10891530 DOI: 10.3390/pharmaceutics16020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression by managing IOP. This review delves into the etiopathology, diagnostic methods, and treatment approaches for glaucoma, with a special focus on IOP management. We discuss a range of active pharmaceutical ingredients used in glaucoma therapy, emphasizing their chemical structure, pharmacological action, therapeutic effectiveness, and safety/tolerability profiles. Notably, most of these therapeutic agents are administered as topical formulations, a critical aspect considering patient compliance and drug delivery efficiency. The classes of glaucoma therapeutics covered in this review include prostaglandin analogs, beta blockers, alpha agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and miotic (cholinergic) agents. This comprehensive overview highlights the importance of topical administration in glaucoma treatment, offering insights into the current state and future directions of pharmacological management in glaucoma.
Collapse
Affiliation(s)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
2
|
Selective laser trabeculoplasty is safe and effective in patients previously treated with prostaglandin analogs: An evidence-based review. Int Ophthalmol 2023; 43:677-695. [PMID: 35962295 DOI: 10.1007/s10792-022-02460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Prostaglandin analogs (PGAs) are first-line treatments for ocular hypertension (OHT) and open-angle glaucoma (OAG). However, frequent side effects and high costs hinder patient's compliance resulting in disease progression. Evidence suggests selective laser trabeculoplasty (SLT) may be considered a first-line treatment for OHT and OAG due to its safety profile, minor side effects, and reduced costs. Considering that PGAs and SLT share action mechanisms, it is hypothesized that previous PGA therapy may affect subsequent SLT efficacy. Therefore, we analyzed if PGAs reduce SLT efficacy. METHODS An evidence-based review was performed to assess the safety and efficacy of SLT in patients previously treated with PGAs. For this purpose, we performed an extensive literature search using the National Library of Medicine's PubMed and Google Scholar database for all English language articles published until May 2021. RESULTS There is evidence of non-superiority of PGAs therapy versus SLT for OHT and OAG. A multicenter, randomized, observer-masked clinical trial (RCT) of untreated OHT and OAG patients concluded that SLT should be offered as the first-line treatment for these patients. This study was supported by a meta-analysis of RCTs, comparing SLT efficacy versus antiglaucoma drugs only, with the advantage of an SLT lower rate of adverse effects. CONCLUSIONS Cost-effectiveness, patient compliance, and antiglaucoma drugs' side effects, including higher surgical failure, favor consideration of SLT as first-line therapy for OAG and OHT. Furthermore, SLT efficacy does not seem to be affected by prior PGA administration; however, larger cohort, comparative, multicenter RCTs are necessary to answer this question.
Collapse
|
3
|
Analysis of the Responsiveness of Latanoprost, Travoprost, Bimatoprost, and Tafluprost in the Treatment of OAG/OHT Patients. J Ophthalmol 2021; 2021:5586719. [PMID: 34123413 PMCID: PMC8169256 DOI: 10.1155/2021/5586719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Aim Within the clinical setting, some patients have been identified as lacking in response to PGAs. This meta-analysis study aimed to evaluate the responsiveness of latanoprost, travoprost, bimatoprost, and tafluprost in OAG/OHT patients, latanoprost nonresponders (LNRs), and the IOP-reducing efficacy and safety. Methods A literature search was conducted on PubMed, Embase, and the Cochrane Controlled Trials Register. The primary clinical endpoint was the number of responders at the end of the study. The secondary clinical endpoint was the IOP reduction at the endpoint from baseline. Safety evaluation included five common adverse events: conjunctival hyperemia, hypertrichosis, ocular burning, ocular itching, and foreign-body sensation. Results Eleven articles containing ten RCTs were included in this meta-analysis study. The results highlighted that, in the OAG/OHT population, there was no statistically significant difference in the responsiveness of the four PGAs. Bimatoprost had a better IOP-reducing efficacy than latanoprost. There was no significant difference in the IOP-reducing efficacy of travoprost, latanoprost, and tafluprost. In LNRs, the responsiveness of bimatoprost, travoprost, and latanoprost did not show statistical differences. Bimatoprost reduced IOP with a greater extent than latanoprost and travoprost in LNRs, while there was no significant difference in the IOP-reducing efficacy of travoprost and latanoprost. No serious adverse events occurred with the treatment of the four PGAs. The prevalence of conjunctival hyperemia due to bimatoprost or tafluprost was significantly higher than that of latanoprost. Other adverse events had no significant difference between the four drugs. Conclusion The existing studies cannot prove that latanoprost, travoprost, bimatoprost, and tafluprost have different responsiveness in OAG/OHT patients. Switching to bimatoprost or travoprost cannot achieve a significant improvement in responsiveness in LNRs. Bimatoprost has a better IOP-reducing efficacy than latanoprost and travoprost. No serious adverse events occurred during treatment with any medication we studied.
Collapse
|
4
|
Adeghate J, Rahmatnejad K, Waisbourd M, Katz LJ. Intraocular pressure-independent management of normal tension glaucoma. Surv Ophthalmol 2018; 64:101-110. [PMID: 30300625 DOI: 10.1016/j.survophthal.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jennifer Adeghate
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Weill Cornell Medical College, Department of Ophthalmology, New York, New York, USA
| | - Kamran Rahmatnejad
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA
| | - Michael Waisbourd
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA; Tel-Aviv University Medical Center, Glaucoma Research Center, Tel-Aviv, Israel
| | - L Jay Katz
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Rouse B, Cipriani A, Shi Q, Coleman AL, Dickersin K, Li T. Network Meta-analysis for Clinical Practice Guidelines: A Case Study on First-Line Medical Therapies for Primary Open-Angle Glaucoma. Ann Intern Med 2016; 164:674-82. [PMID: 27088551 PMCID: PMC5154244 DOI: 10.7326/m15-2367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Network meta-analysis compares multiple treatment options for the same condition and may be useful for developing clinical practice guidelines. PURPOSE To compare treatment recommendations for first-line medical therapy for primary open angle-glaucoma (POAG) from major updates of American Academy of Ophthalmology (AAO) guidelines with the evidence available at the time, using network meta-analysis. DATA SOURCES MEDLINE, Embase, and the Cochrane Library were searched on 11 March 2014 for randomized, controlled trials (RCTs) of glaucoma monotherapies compared with placebo, vehicle, or no treatment or other monotherapies. The AAO Web site was searched in August 2014 to identify AAO POAG guidelines. STUDY SELECTION Eligible RCTs were selected by 2 independent reviewers, and guidelines were selected by 1 person. DATA EXTRACTION One person abstracted recommendations from guidelines and a second person verified. Two people independently abstracted data from included RCTs. DATA SYNTHESIS Guidelines were grouped together on the basis of literature search dates, and RCTs that existed at 1991, 1995, 1999, 2004, and 2009 were analyzed. The outcome of interest was intraocular pressure (IOP) at 3 months. Only the latest guideline made a specific recommendation: prostaglandins. Network meta-analyses showed that all treatments were superior to placebo in decreasing IOP at 3 months. The mean reductions (95% credible intervals [CrIs]) for the highest-ranking class compared with placebo were as follows: 1991: β-blockers, 4.01 (CrI, 0.48 to 7.43); 1995: α2-adrenergic agonists, 5.64 (CrI, 1.73 to 9.50); 1999: prostaglandins, 5.43 (CrI, 3.38 to 7.38); 2004: prostaglandins, 4.75 (CrI, 3.11 to 6.44); 2009: prostaglandins, 4.58 (CrI, 2.94 to 6.24). LIMITATION When comparisons are informed by a small number of studies, the treatment effects and rankings may not be stable. CONCLUSION For timely recommendations when multiple treatment options are available, guidelines developers should consider network meta-analysis. PRIMARY FUNDING SOURCE National Eye Institute, National Institutes of Health.
Collapse
|
7
|
Abstract
Glaucoma is a progressive optic neuropathy that causes characteristic changes of the optic nerve and visual field in relation to intraocular pressure (IOP). It is now known that glaucoma can occur at statistically normal IOPs and prevalence studies have shown that normal tension glaucoma (NTG) is more common than previously thought. While IOP is believed to be the predominant risk factor in primary open angle glaucoma (POAG), IOP-independent risk factors, such as vascular dysregulation, are believed to play an important part in the pathogenesis of NTG. Though certain distinguishing phenotypic features of NTG have been reported, such as an increased frequency of disc hemorrhages, acquired pits of the optic nerve and characteristic patterns of disc cupping and visual field loss, there is much overlap of the clinical findings in NTG with POAG, suggesting that NTG is likely part of a continuum of open angle glaucomas. However, IOP modification is still the mainstay of treatment in NTG. As in traditional POAG, reduction of IOP can be achieved with the use of medications, laser trabeculoplasty or surgery. Studies now show that the choice of medication may also be important in determining the outcomes of these patients. Though it is likely that future treatment of NTG will involve modification of both IOP and IOP-independent risk factors, current efforts to develop IOP-independent neuroprotective treatments have not yet proven to be effective in humans.
Collapse
Affiliation(s)
| | - Joseph Caprioli
- Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, USA
| |
Collapse
|
8
|
Morera FJ, Saravia J, Pontigo JP, Vargas-Chacoff L, Contreras GF, Pupo A, Lorenzo Y, Castillo K, Tilegenova C, Cuello LG, Gonzalez C. Voltage-dependent BK and Hv1 channels expressed in non-excitable tissues: New therapeutics opportunities as targets in human diseases. Pharmacol Res 2015; 101:56-64. [PMID: 26305431 DOI: 10.1016/j.phrs.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.
Collapse
Affiliation(s)
- Francisco J Morera
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Julia Saravia
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Pablo Pontigo
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Gustavo F Contreras
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Yenisleidy Lorenzo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Karen Castillo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Cholpon Tilegenova
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubcock, TX, USA
| | - Luis G Cuello
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubcock, TX, USA.
| | - Carlos Gonzalez
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
9
|
Fung DS, Whitson JT. An evidence-based review of unoprostone isopropyl ophthalmic solution 0.15% for glaucoma: place in therapy. Clin Ophthalmol 2014; 8:543-54. [PMID: 24648719 PMCID: PMC3958522 DOI: 10.2147/opth.s41562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Glaucoma is a progressive, neurodegenerative optic nerve disease that can cause significant visual morbidity and affects over 60 million people worldwide. The only known modifiable risk factor for glaucoma at this time is elevated intraocular pressure (IOP), which may be treated with medications, laser therapy, and/or incisional surgery. Topical ocular medications are commonly used as first-line therapy for glaucoma, although side effects may limit their use. Unoprostone is a novel 22-carbon ocular hypotensive agent that may be advantageous in treating some patients with open angle glaucoma or ocular hypertension. Unlike the 20-carbon prostanoids, such as latanoprost, that lower IOP primarily through an increase in uveoscleral outflow, unoprostone may lower IOP through increased aqueous outflow via the conventional trabecular meshwork pathway. Although not as efficacious as other prostanoids, unoprostone is effective for IOP reduction both as monotherapy and adjunctive therapy with timolol. Unoprostone has decreased affinity for the prostaglandin F2α receptor, which may explain its well tolerated ocular and systemic side effect profile compared with other prostanoids.
Collapse
Affiliation(s)
- Derrick S Fung
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jess T Whitson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|