1
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
T-cell receptor gene transfer exclusively to human CD8(+) cells enhances tumor cell killing. Blood 2012; 120:4334-42. [PMID: 22898597 DOI: 10.1182/blood-2012-02-412973] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8(+) cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8(+) cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8(+) T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8(+) cell-specific gene delivery.
Collapse
|
3
|
Abstract
The function of T lymphocytes as orchestrators and effectors of the adaptive immune response is directed by the specificity of their T cell receptors (TCRs). By transferring into T cells the genes encoding antigen-specific receptors, the functional activity of large populations of T cells can be redirected against defined targets including virally infected or cancer cells. The potential of therapeutic T cells to traffic to sites of disease, to expand and to persist after a single treatment remains a major advantage over the currently available immunotherapies that use monoclonal antibodies. Here we review recent progress in the field of TCR gene therapy, outlining challenges to its successful implementation and the strategies being used to overcome them. We detail strategies used in the optimization of affinity and surface expression of the introduced TCR, the choice of T cell subpopulations for gene transfer, and the promotion of persistence of gene-modified T cells in vivo. We review the safety concerns surrounding the use of gene-modified T cells in patients, discussing emerging solutions to these problems, and describe the increasingly positive results from the use of gene-modified T cells in recent clinical trials of adoptive cellular immunotherapy. The increasing sophistication of measures to ensure the safety of engineered T cells is accompanied by an increasing number of clinical trials: these will be essential to guide the effective translation of cellular immunotherapy from the laboratory to the bedside.
Collapse
Affiliation(s)
- Benjamin J Uttenthal
- Department of Immunology, Institute of Immunity, Infection and Transplantation, University College London (UCL), Royal Free Hospital, London, UK.
| | | | | | | |
Collapse
|
4
|
Wälchli S, Løset GÅ, Kumari S, Nergård Johansen J, Yang W, Sandlie I, Olweus J. A practical approach to T-cell receptor cloning and expression. PLoS One 2011; 6:e27930. [PMID: 22132171 PMCID: PMC3221687 DOI: 10.1371/journal.pone.0027930] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022] Open
Abstract
Although cloning and expression of T-cell Receptors (TcRs) has been performed for almost two decades, these procedures are still challenging. For example, the use of T-cell clones that have undergone limited expansion as starting material to limit the loss of interesting TcRs, must be weighed against the introduction of mutations by excess PCR cycles. The recent interest in using specific TcRs for cancer immunotherapy has, however, increased the demand for practical and robust methods to rapidly clone and express TcRs. Two main technologies for TcR cloning have emerged; the use of a set of primers specifically annealing to all known TcR variable domains, and 5′-RACE amplification. We here present an improved 5′-RACE protocol that represents a fast and reliable way to identify a TcR from 105 cells only, making TcR cloning feasible without a priori knowledge of the variable domain sequence. We further present a detailed procedure for the subcloning of TcRα and β chains into an expression system. We show that a recombination-based cloning protocol facilitates simple and rapid transfer of the TcR transgene into different expression systems. The presented comprehensive method can be performed in any laboratory with standard equipment and with a limited amount of starting material. We finally exemplify the straightforwardness and reliability of our procedure by cloning and expressing several MART-1-specific TcRs and demonstrating their functionality.
Collapse
MESH Headings
- Cloning, Molecular/methods
- Electroporation
- Genetic Vectors/genetics
- Humans
- Jurkat Cells
- MART-1 Antigen/genetics
- MART-1 Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombination, Genetic/genetics
- Reproducibility of Results
- Retroviridae/genetics
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- * E-mail: (SW); (JO)
| | - Geir Åge Løset
- Department of Molecular Biosciences and Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Shraddha Kumari
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jorunn Nergård Johansen
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Weiwen Yang
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Inger Sandlie
- Department of Molecular Biosciences and Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Johanna Olweus
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail: (SW); (JO)
| |
Collapse
|
5
|
Pasetto A, Frelin L, Brass A, Yasmeen A, Koh S, Lohmann V, Bartenschlager R, Magalhaes I, Maeurer M, Sällberg M, Chen M. Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3. J Gen Virol 2011; 93:247-258. [PMID: 22071510 PMCID: PMC3352347 DOI: 10.1099/vir.0.037903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell–BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS31073–1081 CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS31073 peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Laboratory Medicine, Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anette Brass
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anila Yasmeen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sarene Koh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Laboratory Medicine, Stockholm, Sweden
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Isabelle Magalhaes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Markus Maeurer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | | | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Davis JL, Theoret MR, Zheng Z, Lamers CHJ, Rosenberg SA, Morgan RA. Development of human anti-murine T-cell receptor antibodies in both responding and nonresponding patients enrolled in TCR gene therapy trials. Clin Cancer Res 2011; 16:5852-61. [PMID: 21138872 DOI: 10.1158/1078-0432.ccr-10-1280] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune responses to gene-modified cells are a concern in the field of human gene therapy, as they may impede effective treatment. We conducted 2 clinical trials in which cancer patients were treated with lymphocytes genetically engineered to express murine T-cell receptors (mTCR) specific for tumor-associated antigens p53 and gp100. EXPERIMENTAL DESIGN Twenty-six patients treated with autologous lymphocytes expressing mTCR had blood and serum samples available for analysis. Patient sera were assayed for the development of a humoral immune response. Adoptive cell transfer characteristics were analyzed to identify correlates to immune response. RESULTS Six of 26 (23%) patients' posttreatment sera exhibited specific binding of human anti-mTCR antibodies to lymphocytes transduced with the mTCR. Antibody development was found in both responding and nonresponding patients. The posttreatment sera of 3 of these 6 patients mediated a 60% to 99% inhibition of mTCR activity as measured by a reduction in antigen-specific interferon-γ release. Detailed analysis of posttreatment serum revealed that antibody binding was β-chain specific in 1 patient whereas it was α-chain specific in another. CONCLUSIONS A subset of patients treated with mTCR-engineered T cells developed antibodies directed to the mTCR variable regions and not to the constant region domains common to all mTCR. Overall, the development of a host immune response was not associated with the level of transduced cell persistence or response to therapy. In summary, patients treated with mTCR can develop an immune response to gene-modified cells in a minority of cases, but this may not affect clinical outcome.
Collapse
Affiliation(s)
- Jeremy L Davis
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
7
|
Rational design of T cell receptors with enhanced sensitivity for antigen. PLoS One 2011; 6:e18027. [PMID: 21455495 PMCID: PMC3063236 DOI: 10.1371/journal.pone.0018027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/18/2011] [Indexed: 11/20/2022] Open
Abstract
Enhancing the affinity of therapeutic T cell receptors (TCR) without altering their specificity is a significant challenge for adoptive immunotherapy. Current efforts have primarily relied on empirical approaches. Here, we used structural analyses to identify a glycine-serine variation in the TCR that modulates antigen sensitivity. A G at position 107 within the CDR3β stalk is encoded within a single mouse and human TCR, TRBV13-2 and TRBV12-5 respectively. Most TCR bear a S107. The S hydroxymethyl side chain intercalates into the core of the CDR3β loop, stabilizing it. G107 TRBV possess a gap in their CDR3β where this S hydroxymethyl moiety would fit. We predicted based on modeling and molecular dynamics simulations that a G107S substitution would increase CDR3β stability and thereby augment receptor sensitivity. Experimentally, a G107S replacement led to an ∼10–1000 fold enhanced antigen sensitivity in 3 of 4 TRBV13-2+ TCR tested. Analysis of fine specificity indicated a preserved binding orientation. These results support the feasibility of developing high affinity antigen specific TCR for therapeutic purposes through the identification and manipulation of critical framework residues. They further indicate that amino acid variations within TRBV not directly involved in ligand contact can program TCR sensitivity, and suggest a role for CDR3 stability in this programming.
Collapse
|
8
|
Balagopalan L, Ashwell BA, Bernot KM, Akpan IO, Quasba N, Barr VA, Samelson LE. Enhanced T-cell signaling in cells bearing linker for activation of T-cell (LAT) molecules resistant to ubiquitylation. Proc Natl Acad Sci U S A 2011; 108:2885-90. [PMID: 21282648 PMCID: PMC3041139 DOI: 10.1073/pnas.1007098108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Linker for activation of T cells (LAT) plays a central role in T-cell activation by nucleating signaling complexes that are critical for the propagation of T-cell signals from the plasma membrane to the cellular interior. The role of phosphorylation and palmitoylation in LAT function has been well studied, but not much is known about other strategies by which the cell modulates LAT activity. We have focused on LAT ubiquitylation and have mapped the sites on which LAT is ubiquitylated. To elucidate the biological role of this process, we substituted LAT lysines with arginines. This resulted in a dramatic decrease in overall LAT ubiquitylation. Ubiquitylation-resistant mutants of LAT were internalized at rates comparable to wild-type LAT in a mechanism that required Cbl family proteins. However, these mutants displayed a defect in protein turnover rates. T-cell signaling was elevated in cells reconstituted with LAT mutants resistant to ubiquitylation, indicating that inhibition of LAT ubiquitylation enhances T-cell potency. These results support LAT ubiquitylation as a molecular checkpoint for attenuation of T-cell signaling.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Benjamin A. Ashwell
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Itoro O. Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Naeha Quasba
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Valarie A. Barr
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lawrence E. Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Abstract
Building on the principals that the adoptive transfer of T cells can lead to the regression of established tumors in humans, investigators are now further manipulating these cells using genetic engineering. Two decades of human gene transfer experiments have resulted in the translation of laboratory technology into robust clinical applications. The purpose of this review is to give the reader an introduction to the 2 major approaches being developed to redirect effector T-cell specificity. Primary human T cells can be engineered to express exogenous T-cell receptors or chimeric antigen receptors directed against multiple human tumor antigens. Initial clinical trial results have demonstrated that both T-cell receptor- and chimeric antigen receptor-engineered T cells can be administered to cancer patients and mediate tumor regression.
Collapse
|