1
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N. Engquist
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK
- Correspondence to: Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK. E-mail:
| |
Collapse
|
2
|
Narayanan N, Jiang C, Wang C, Uzunalli G, Whittern N, Chen D, Jones OG, Kuang S, Deng M. Harnessing Fiber Diameter-Dependent Effects of Myoblasts Toward Biomimetic Scaffold-Based Skeletal Muscle Regeneration. Front Bioeng Biotechnol 2020; 8:203. [PMID: 32266234 PMCID: PMC7105569 DOI: 10.3389/fbioe.2020.00203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
Regeneration of skeletal muscles is limited in cases of volumetric muscle loss and muscle degenerative diseases. Therefore, there is a critical need for developing strategies that provide cellular and structural support for skeletal muscle regeneration. In the present work, a bioengineered cell niche composed of mechanically competent aligned polyester fiber scaffolds is developed to mimic the oriented muscle fiber microenvironment by electrospinning poly(lactide-co-glycolide) (PLGA) using a custom-designed rotating collector with interspaced parallel blades. Aligned fiber scaffolds with fiber diameters ranging from 335 ± 154 nm to 3013 ± 531 nm are characterized for their bioactivities in supporting growth and differentiation of myoblasts. During in vitro culture, polymeric scaffolds with larger fiber diameter support enhanced alignment, growth, and differentiation of myoblasts associated with phosphorylation of p38 MAPK and upregulated expression of myogenin and myosin heavy chain. In vivo studies using a dystrophin-deficient mdx mouse model show that optimized fiber scaffolds seeded with primary myoblasts result in formation of dystrophin-positive myofibers network in tibialis anterior muscles. Collectively, these experiments provide critical insights on harnessing interactions between muscle cells and engineered fiber matrices to develop effective biomaterials for accelerated muscle regeneration.
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Chunhui Jiang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Gözde Uzunalli
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Nicole Whittern
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Da Chen
- Department of Food Sciences, Purdue University, West Lafayette, IN, United States
| | - Owen G. Jones
- Department of Food Sciences, Purdue University, West Lafayette, IN, United States
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Department of Materials Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Wosczyna MN, Rando TA. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell 2018; 46:135-143. [PMID: 30016618 PMCID: PMC6075730 DOI: 10.1016/j.devcel.2018.06.018] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Skeletal muscle has an extraordinary regenerative capacity due to the activity of tissue-specific muscle stem cells. Consequently, these cells have received the most attention in studies investigating the cellular processes of skeletal muscle regeneration. However, efficient capacity to rebuild this tissue also depends on additional cells in the local milieu, as disrupting their normal contributions often leads to incomplete regeneration. Here, we review these additional cells that contribute to the regenerative process. Understanding the complex interactions between and among these cell populations has the potential to lead to therapies that will help promote normal skeletal muscle regeneration under conditions in which this process is suboptimal.
Collapse
Affiliation(s)
- Michael N Wosczyna
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
4
|
Milner DJ, Bionaz M, Monaco E, Cameron JA, Wheeler MB. Myogenic potential of mesenchymal stem cells isolated from porcine adipose tissue. Cell Tissue Res 2018; 372:507-522. [PMID: 29318389 DOI: 10.1007/s00441-017-2764-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/02/2017] [Indexed: 12/31/2022]
Abstract
Advances in stem cell biology and materials science have provided a basis for developing tissue engineering methods to repair muscle injury. Among stem cell populations with potential to aid muscle repair, adipose-derived mesenchymal stem cells (ASC) hold great promise. To evaluate the possibility of using porcine ASC for muscle regeneration studies, we co-cultured porcine ASC with murine C2C12 myoblasts. These experiments demonstrated that porcine ASC display significant myogenic potential. Co-culture of ASC expressing green fluorescent protein (GFP) with C2C12 cells resulted in GFP+ myotube formation, indicating fusion of ASC with myoblasts to form myotubes. The presence of porcine lamin A/C positive nuclei in myotubes and RTqPCR analysis of porcine myogenin and desmin expression confirmed that myotube nuclei derived from ASC contribute to muscle gene expression. Co-culturing GFP+ASC with porcine satellite cells demonstrated enhanced myogenic capability of ASC, as the percentage of labeled myotubes increased compared to mouse co-cultures. Enhancing myogenic potential of ASC through soluble factor treatment or expansion of ASC with innate myogenic capacity should allow for their therapeutic use to regenerate muscle tissue lost to disease or injury.
Collapse
Affiliation(s)
- Derek J Milner
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Massimo Bionaz
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisa Monaco
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jo Ann Cameron
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew B Wheeler
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018; 15:20170380. [PMID: 29343633 PMCID: PMC5805959 DOI: 10.1098/rsif.2017.0380] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
6
|
de Carvalho SC, Hindi SM, Kumar A, Marques MJ. Effects of omega-3 on matrix metalloproteinase-9, myoblast transplantation and satellite cell activation in dystrophin-deficient muscle fibers. Cell Tissue Res 2017. [PMID: 28623422 DOI: 10.1007/s00441-017-2640-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Duchenne muscular dystrophy (DMD), lack of dystrophin leads to progressive muscle degeneration, with DMD patients suffering from cardiorespiratory failure. Cell therapy is an alternative to life-long corticoid therapy. Satellite cells, the stem cells of skeletal muscles, do not completely compensate for the muscle damage in dystrophic muscles. Elevated levels of proinflammatory and profibrotic factors, such as metalloproteinase 9 (MMP-9), impair muscle regeneration, leading to extensive fibrosis and poor results with myoblast transplantation therapies. Omega-3 is an anti-inflammatory drug that protects against muscle degeneration in the mdx mouse model of DMD. In the present study, we test our hypothesis that omega-3 affects MMP-9 and thereby benefits muscle regeneration and myoblast transplantation in the mdx mouse. We observe that omega-3 reduces MMP-9 gene expression and improves myoblast engraftment, satellite cell activation, and muscle regeneration by mechanisms involving, at least in part, the regulation of macrophages, as shown here with the fluorescence-activated cell sorting technique. The present study demonstrates the benefits of omega-3 on satellite cell survival and muscle regeneration, further supporting its use in clinical trials and cell therapies in DMD.
Collapse
Affiliation(s)
- Samara Camaçari de Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, CEP 1083-970, Brazil
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maria Julia Marques
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, CEP 1083-970, Brazil.
| |
Collapse
|
7
|
Garg K, Boppart MD. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche. J Appl Physiol (1985) 2016; 121:1053-1058. [PMID: 27539500 DOI: 10.1152/japplphysiol.00594.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span.
Collapse
Affiliation(s)
- Koyal Garg
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
8
|
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by mutations in the dystrophin-encoding DMD gene. The DMD gene, spanning over 2.4 megabases along the short arm of the X chromosome (Xp21.2), is the largest genetic locus known in the human genome. The size of DMD, combined with the complexity of the DMD phenotype and the extent of the affected tissues, begs for the development of novel, ideally complementary, therapeutic approaches. Genome editing based on the delivery of sequence-specific programmable nucleases into dystrophin-defective cells has recently enriched the portfolio of potential therapies under investigation. Experiments involving different programmable nuclease platforms and target cell types have established that the application of genome-editing principles to the targeted manipulation of defective DMD loci can result in the rescue of dystrophin protein synthesis in gene-edited cells. Looking towards translation into the clinic, these proof-of-principle experiments have been swiftly followed by the conversion of well-established viral vector systems into delivery agents for DMD editing. These gene-editing tools consist of zinc-finger nucleases (ZFNs), engineered homing endoculeases (HEs), transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases (RGNs) based on clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 systems. Here, we succinctly review these fast-paced developments and technologies, highlighting their relative merits and potential bottlenecks, when used as part of in vivo and ex vivo gene-editing strategies.
Collapse
Affiliation(s)
- Ignazio Maggio
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Xiaoyu Chen
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Negroni E, Bigot A, Butler-Browne GS, Trollet C, Mouly V. Cellular Therapies for Muscular Dystrophies: Frustrations and Clinical Successes. Hum Gene Ther 2016; 27:117-26. [PMID: 26652770 DOI: 10.1089/hum.2015.139] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-based therapy for muscular dystrophies was initiated in humans after promising results obtained in murine models. Early trials failed to show substantial clinical benefit, sending researchers back to the bench, which led to the discovery of many hurdles as well as many new venues to optimize this therapeutic strategy. In this review we summarize progress in preclinical cell therapy approaches, with a special emphasis on human cells potentially attractive for human clinical trials. Future perspectives for cell therapy in skeletal muscle are discussed, including the perspective of combined therapeutic approaches.
Collapse
Affiliation(s)
- Elisa Negroni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Anne Bigot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Gillian S Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| |
Collapse
|
10
|
Ortuste Quiroga HP, Goto K, Zammit PS. Isolation, Cryosection and Immunostaining of Skeletal Muscle. Methods Mol Biol 2016; 1460:85-100. [PMID: 27492168 DOI: 10.1007/978-1-4939-3810-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult skeletal muscle is maintained and repaired by resident stem cells called satellite cells, located between the plasmalemma of a muscle fiber, and the surrounding basal lamina. When needed, satellite cells are activated to form proliferative myoblasts, that then differentiate and fuse to existing muscle fibers, or fuse together to form replacement myofibers. In parallel, a proportion of satellite cells self-renew, to maintain the stem cell pool. To date, Pax7 is the marker of choice for identifying quiescent satellite cells. Co-immunostaining of skeletal muscle with Pax7 and laminin allows both identification of satellite cells, and the myofiber that they are associated with. Furthermore, satellite cells can be followed through the early stages of the myogenic program by co-immunostaining with myogenic regulatory factors such as MyoD. To test genetically modified mice for satellite cell expression, co-immunostaining can be performed for Pax7 and reporter genes such as eGFP. Here, we describe a method for identification of satellite cells in skeletal muscle sections, including muscle isolation, cryosectioning and co-immunostaining for Pax7 and laminin.
Collapse
Affiliation(s)
- Huascar P Ortuste Quiroga
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, 20-1 Matsushita, Ushikawa, Toyohashi, Aichi, 440-8511, Japan
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
11
|
Negroni E, Gidaro T, Bigot A, Butler-Browne GS, Mouly V, Trollet C. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathol Appl Neurobiol 2015; 41:270-87. [PMID: 25405809 DOI: 10.1111/nan.12198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.
Collapse
Affiliation(s)
- Elisa Negroni
- Institut de Myologie, CNRS FRE3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, 47 bd de l'Hôpital, Paris, 75013, France
| | | | | | | | | | | |
Collapse
|
12
|
Riederer I, Bonomo AC, Mouly V, Savino W. Laminin therapy for the promotion of muscle regeneration. FEBS Lett 2015; 589:3449-53. [DOI: 10.1016/j.febslet.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 12/18/2022]
|
13
|
Lojk J, Mis K, Pirkmajer S, Pavlin M. siRNA delivery into cultured primary human myoblasts - optimization of electroporation parameters and theoretical analysis. Bioelectromagnetics 2015; 36:551-63. [DOI: 10.1002/bem.21936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/02/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Jasna Lojk
- Faculty of Electrical Engineering; University of Ljubljana; Ljubljana Slovenia
| | - Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - Mojca Pavlin
- Faculty of Electrical Engineering; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
14
|
Electrotransfection and lipofection show comparable efficiency for in vitro gene delivery of primary human myoblasts. J Membr Biol 2014; 248:273-83. [PMID: 25534347 DOI: 10.1007/s00232-014-9766-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/11/2014] [Indexed: 01/20/2023]
Abstract
Transfection of primary human myoblasts offers the possibility to study mechanisms that are important for muscle regeneration and gene therapy of muscle disease. Cultured human myoblasts were selected here because muscle cells still proliferate at this developmental stage, which might have several advantages in gene therapy. Gene therapy is one of the most sought-after tools in modern medicine. Its progress is, however, limited due to the lack of suitable gene transfer techniques. To obtain better insight into the transfection potential of the presently used techniques, two non-viral transfection methods--lipofection and electroporation--were compared. The parameters that can influence transfection efficiency and cell viability were systematically approached and compared. Cultured myoblasts were transfected with the pEGFP-N1 plasmid either using Lipofectamine 2000 or with electroporation. Various combinations for the preparation of the lipoplexes and the electroporation media, and for the pulsing protocols, were tested and compared. Transfection efficiency and cell viability were inversely proportional for both approaches. The appropriate ratio of Lipofectamine and plasmid DNA provides optimal conditions for lipofection, while for electroporation, RPMI medium and a pulsing protocol using eight pulses of 2 ms at E = 0.8 kV/cm proved to be the optimal combination. The transfection efficiencies for the optimal lipofection and optimal electrotransfection protocols were similar (32 vs. 32.5%, respectively). Both of these methods are effective for transfection of primary human myoblasts; however, electroporation might be advantageous for in vivo application to skeletal muscle.
Collapse
|
15
|
The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; 56:56-65. [PMID: 25242742 DOI: 10.1016/j.biocel.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
16
|
Stuelsatz P, Shearer A, Li Y, Muir LA, Ieronimakis N, Shen QW, Kirillova I, Yablonka-Reuveni Z. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency. Dev Biol 2014; 397:31-44. [PMID: 25236433 DOI: 10.1016/j.ydbio.2014.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 12/18/2022]
Abstract
Extraocular muscles (EOMs) are highly specialized skeletal muscles that originate from the head mesoderm and control eye movements. EOMs are uniquely spared in Duchenne muscular dystrophy and animal models of dystrophin deficiency. Specific traits of myogenic progenitors may be determinants of this preferential sparing, but very little is known about the myogenic cells in this muscle group. While satellite cells (SCs) have long been recognized as the main source of myogenic cells in adult muscle, most of the knowledge about these cells comes from the prototypic limb muscles. In this study, we show that EOMs, regardless of their distinctive Pax3-negative lineage origin, harbor SCs that share a common signature (Pax7(+), Ki67(-), Nestin-GFP(+), Myf5(nLacZ+), MyoD-positive lineage origin) with their limb and diaphragm somite-derived counterparts, but are remarkably endowed with a high proliferative potential as revealed in cell culture assays. Specifically, we demonstrate that in adult as well as in aging mice, EOM SCs possess a superior expansion capacity, contributing significantly more proliferating, differentiating and renewal progeny than their limb and diaphragm counterparts. These robust growth and renewal properties are maintained by EOM SCs isolated from dystrophin-null (mdx) mice, while SCs from muscles affected by dystrophin deficiency (i.e., limb and diaphragm) expand poorly in vitro. EOM SCs also retain higher performance in cell transplantation assays in which donor cells were engrafted into host mdx limb muscle. Collectively, our study provides a comprehensive picture of EOM myogenic progenitors, showing that while these cells share common hallmarks with the prototypic SCs in somite-derived muscles, they distinctively feature robust growth and renewal capacities that warrant the title of high performance myo-engines and promote consideration of their properties for developing new approaches in cell-based therapy to combat skeletal muscle wasting.
Collapse
Affiliation(s)
- Pascal Stuelsatz
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew Shearer
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Yunfei Li
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Lindsey A Muir
- Program in Molecular and Cellular Biology and Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas Ieronimakis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Qingwu W Shen
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Irina Kirillova
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
17
|
Azzabi F, Rottmar M, Jovaisaite V, Rudin M, Sulser T, Boss A, Eberli D. Viability, differentiation capacity, and detectability of super-paramagnetic iron oxide-labeled muscle precursor cells for magnetic-resonance imaging. Tissue Eng Part C Methods 2014; 21:182-91. [PMID: 24988198 DOI: 10.1089/ten.tec.2014.0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell therapies are a promising approach for the treatment of a variety of human conditions including stress urinary incontinence, but their success greatly depends on the biodistribution, migration, survival, and differentiation of the transplanted cells. Noninvasive in vivo cell tracking therefore presents an important aspect for translation of such a procedure into the clinics. Upon labeling with superparamagnetic iron oxide (SPIO) nanoparticles, cells can be tracked by magnetic resonance imaging (MRI), but possible adverse effect of the labeling have to be considered when labeling stem cells with SPIOs. In this study, human muscle precursor cells (hMPC) were labeled with increasing concentrations of SPIO nanoparticles (100-1600 μg/mL) and cell viability and differentiation capacity upon labeling was assessed in vitro. While a linear dependence between cell viability and nanoparticle concentration could be observed, differentiation capacity was not affected by the presence of SPIOs. Using a nude mouse model, a concentration (400 μg/mL) could be defined that allows reliable detection of hMPCs by MRI but does not influence myogenic in vivo differentiation to mature and functional muscle tissue. This suggests that such an approach can be safely used in a clinical setting to track muscle regeneration in patients undergoing cell therapy without negative effects on the functionality of the bioengineered muscle.
Collapse
Affiliation(s)
- Fahd Azzabi
- 1 Division of Urology, University Hospital Zurich , Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Grounds MD. Therapies for sarcopenia and regeneration of old skeletal muscles: more a case of old tissue architecture than old stem cells. BIOARCHITECTURE 2014; 4:81-7. [PMID: 25101758 DOI: 10.4161/bioa.29668] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Age related loss of skeletal muscle mass and function (sarcopenia) reduces independence and the quality of life for individuals, and leads to falls and fractures with escalating health costs for the rapidly aging human population. Thus there is much interest in developing interventions to reduce sarcopenia. One area that has attracted recent attention is the proposed use of myogenic stem cells to improve regeneration of old muscles. This mini-review challenges the fundamental need for myogenic stem cell therapy for sarcopenia. It presents evidence that demonstrates the excellent capacity of myogenic stem cells from very old rodent and human muscles to form new muscles after experimental myofiber necrosis. The many factors required for successful muscle regeneration are considered with a strong focus on integration of components of old muscle bioarchitecture. The fundamental role of satellite cells in homeostasis of normal aging muscles and the incidence of endogenous regeneration in old muscles is questioned. These issues, combined with problems for clinical myogenic stem cell therapies for severe muscle diseases, raise fundamental concerns about the justification for myogenic stem cell therapy for sarcopenia.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Anatomy, Physiology and Human Biology; University of Western Australia; Crawley, Australia
| |
Collapse
|
19
|
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment -- relevance for therapy. FEBS J 2013; 280:4281-93. [PMID: 23560812 PMCID: PMC3795440 DOI: 10.1111/febs.12273] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
There is currently no cure for muscular dystrophies, although several promising strategies are in basic and clinical research. One such strategy is cell transplantation with satellite cells (or their myoblast progeny) to repair damaged muscle and provide dystrophin protein with the aim of preventing subsequent myofibre degeneration and repopulating the stem cell niche for future use. The present review aims to cover recent advances in satellite cell/myoblast therapy and to discuss the challenges that remain for it to become a realistic therapy.
Collapse
Affiliation(s)
- Deborah Briggs
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| |
Collapse
|
20
|
Vallese D, Negroni E, Duguez S, Ferry A, Trollet C, Aamiri A, Vosshenrich CAJ, Füchtbauer EM, Di Santo JP, Vitiello L, Butler-Browne G, Mouly V. The Rag2⁻Il2rb⁻Dmd⁻ mouse: a novel dystrophic and immunodeficient model to assess innovating therapeutic strategies for muscular dystrophies. Mol Ther 2013; 21:1950-7. [PMID: 23975040 DOI: 10.1038/mt.2013.186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/25/2013] [Indexed: 01/06/2023] Open
Abstract
The development of innovative therapeutic strategies for muscular dystrophies, particularly cell-based approaches, is still a developing field. Although positive results have been obtained in animal models, they have rarely been confirmed in patients and resulted in very limited clinical improvements, suggesting some specificity in humans. These findings emphasized the need for an appropriate animal model (i.e., immunodeficient and dystrophic) to investigate in vivo the behavior of transplanted human myogenic stem cells. We report a new model, the Rag2(-)Il2rb(-)Dmd(-) mouse, which lacks T, B, and NK cells, and also carries a mutant Dmd allele that prevents the production of any dystrophin isoform. The dystrophic features of this new model are comparable with those of the classically used mdx mouse, but with the total absence of any revertant dystrophin positive fiber. We show that Rag2(-)Il2rb(-)Dmd(-) mice allow long-term xenografts of human myogenic cells. Altogether, our findings indicate that the Rag2(-)Il2rb(-)Dmd(-) mouse represents an ideal model to gain further insights into the behavior of human myogenic stem cells in a dystrophic context, and can be used to assess innovative therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Denis Vallese
- 1] UPMC Université Pierre et Marie Curie (UPMC), UM76, Institut de Myologie, Paris, France [2] INSERM U 974, Institut de Myologie, Paris, France [3] CNRS UMR 7215, Institut de Myologie, Paris, France [4] Department of Biology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mori R, Kamei N, Okawa S, Nakabayashi A, Yokota K, Higashi Y, Ochi M. Promotion of skeletal muscle repair in a rat skeletal muscle injury model by local injection of human adipose tissue-derived regenerative cells. J Tissue Eng Regen Med 2012; 9:1150-60. [PMID: 23239611 DOI: 10.1002/term.1659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/07/2012] [Accepted: 10/21/2012] [Indexed: 01/09/2023]
Abstract
Human adipose tissue-derived regenerative cells (ADRCs) can be isolated easily and aseptically from unwanted subcutaneous fat without culturing. ADRCs have been used in clinical cosmetic therapy. In addition, they are expected to be an attractive and feasible source of cell-based therapies in regenerative medicine. Therefore, this paper investigates whether transplantation of human adult ADRCs into skeletal muscle injury models promotes the repair of muscle tissues. This was done by locally injecting human ADRCs into an injured site after laceration of the nude-rat tibialis anterior muscle. Phosphate-buffered saline (PBS) and bone marrow mononuclear cells (MNCs) were injected as negative and positive controls, respectively. After injury, recovery of muscle strength was accelerated by transplantation of ADRCs compared to administration of PBS and MNCs. Moreover, transplantation of ADRCs also enhanced angiogenesis and myogenesis, but the number of vascular and muscular cells labeled with the human cell-specific maker was limited at the injury site. Results showed that transplantation of ADRCs into a skeletal muscle injury model promoted repair of muscle tissues in a paracrine manner rather than differentiation of itself into blood vessels and myofibres. Thus, it is believed that ADRCs are a useful and feasible cell source not only for cosmetic therapy but also for regenerative therapy.
Collapse
Affiliation(s)
- Ryo Mori
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Naosuke Kamei
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan.,Division of Regeneration and Medicine, Hiroshima University Hospital, Japan
| | - Shingo Okawa
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Akihiro Nakabayashi
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Kazunori Yokota
- Department of Plastic and Reconstructive Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Hiroshima University Hospital, Japan
| | - Mitsuo Ochi
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| |
Collapse
|
22
|
Salani S, Donadoni C, Rizzo F, Bresolin N, Comi GP, Corti S. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J Cell Mol Med 2012; 16:1353-64. [PMID: 22129481 PMCID: PMC3823206 DOI: 10.1111/j.1582-4934.2011.01498.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs.
Collapse
Affiliation(s)
- Sabrina Salani
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Trophic actions of bone marrow-derived mesenchymal stromal cells for muscle repair/regeneration. Cells 2012; 1:832-50. [PMID: 24710532 PMCID: PMC3901134 DOI: 10.3390/cells1040832] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent the leading candidate cell in tissue engineering and regenerative medicine. These cells can be easily isolated, expanded in vitro and are capable of providing significant functional benefits after implantation in the damaged muscle tissues. Despite their plasticity, the participation of BM-MSCs to new muscle fiber formation is controversial; in fact, emerging evidence indicates that their therapeutic effects occur without signs of long-term tissue engraftment and involve the paracrine secretion of cytokines and growth factors with multiple effects on the injured tissue, including modulation of inflammation and immune reaction, positive extracellular matrix (ECM) remodeling, angiogenesis and protection from apoptosis. Recently, a new role for BM-MSCs in the stimulation of muscle progenitor cells proliferation has been demonstrated, suggesting the potential ability of these cells to influence the fate of local stem cells and augment the endogenous mechanisms of repair/regeneration in the damaged tissues.
Collapse
|
24
|
Bencze M, Negroni E, Vallese D, Yacoub-Youssef H, Chaouch S, Wolff A, Aamiri A, Di Santo JP, Chazaud B, Butler-Browne G, Savino W, Mouly V, Riederer I. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol Ther 2012; 20:2168-79. [PMID: 23070116 DOI: 10.1038/mt.2012.189] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2(-/-) γC(-/-) immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.
Collapse
|
25
|
Bentzinger CF, Wang YX, von Maltzahn J, Rudnicki MA. The emerging biology of muscle stem cells: implications for cell-based therapies. Bioessays 2012; 35:231-41. [PMID: 22886714 PMCID: PMC3594813 DOI: 10.1002/bies.201200063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-based therapies for degenerative diseases of the musculature remain on the verge of feasibility. Myogenic cells are relatively abundant, accessible, and typically harbor significant proliferative potential ex vivo. However, their use for therapeutic intervention is limited due to several critical aspects of their complex biology. Recent insights based on mouse models have advanced our understanding of the molecular mechanisms controlling the function of myogenic progenitors significantly. Moreover, the discovery of atypical myogenic cell types with the ability to cross the blood-muscle barrier has opened exciting new therapeutic avenues. In this paper, we outline the major problems that are currently associated with the manipulation of myogenic cells and discuss promising strategies to overcome these obstacles.
Collapse
Affiliation(s)
- C Florian Bentzinger
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther 2012; 20:1501-7. [PMID: 22692496 DOI: 10.1038/mt.2012.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle disease caused by mutations in the dystrophin gene. Adeno-associated viral (AAV) vector-mediated gene replacement strategies hold promise as a treatment. Studies in animal models and human trials suggested that immune responses to AAV capsid proteins and transgene products prevented efficient gene therapy. In this study, we used widespread intramuscular (i.m.) injection to deliver AAV6-canine micro-dystrophin (c-µdys) throughout a group of skeletal muscles in dystrophic dogs given a brief course of commonly used immunosuppressants. Robust c-µdys expression was obtained for at least two years and was associated with molecular reconstitution of the dystrophin-glycoprotein complex (DGC) at the muscle membrane. Importantly, c-µdys expression was maintained for at least 18 months after discontinuing immunosuppression. The results obtained in a relevant preclinical model of DMD demonstrate feasibility of widespread AAV-mediated muscle transduction and transgene expression in the presence of transient immunosuppression to achieve molecular reconstitution that can be directly translated to human trials.
Collapse
|
27
|
Yablonka-Reuveni Z. The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 2012; 59:1041-59. [PMID: 22147605 DOI: 10.1369/0022155411426780] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell's indispensable role in muscle repair has been reaffirmed.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| |
Collapse
|
28
|
|
29
|
Patel K, Morgan J. 185th ENMC International Workshop: stem/precursor cells as a therapeutic strategy for muscular dystrophies 3-5 June 2011, Naarden, The Netherlands. Neuromuscul Disord 2011; 22:447-52. [PMID: 22130186 DOI: 10.1016/j.nmd.2011.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/29/2011] [Indexed: 01/06/2023]
Affiliation(s)
- Ketan Patel
- School of Biological Sciences, University of Reading, Hopkins Building, Reading RG6 6UB, UK
| | | |
Collapse
|
30
|
Riederer I, Negroni E, Bencze M, Wolff A, Aamiri A, Di Santo JP, Silva-Barbosa SD, Butler-Browne G, Savino W, Mouly V. Slowing down differentiation of engrafted human myoblasts into immunodeficient mice correlates with increased proliferation and migration. Mol Ther 2011; 20:146-54. [PMID: 21934656 DOI: 10.1038/mt.2011.193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have used a model of xenotransplantation in which human myoblasts were transplanted intramuscularly into immunodeficient Rag2(-/-)γC(-/-) mice, in order to investigate the kinetics of proliferation and differentiation of the transplanted cells. After injection, most of the human myoblasts had already differentiated by day 5. This differentiation correlated with reduction in proliferation and limited migration of the donor cells within the regenerating muscle. These results suggest that the precocious differentiation, already detected at 3 days postinjection, is a limiting factor for both the migration from the injection site and the participation of the donor cells to muscle regeneration. When we stimulated in vivo proliferation of human myoblasts, transplanting them in a serum-containing medium, we observed 5 days post-transplantation a delay of myogenic differentiation and an increase in cell numbers, which colonized a much larger area within the recipient's muscle. Importantly, these myoblasts maintained their ability to differentiate, since we found higher numbers of myofibers seen 1 month postengraftment, as compared to controls. Conceptually, these data suggest that in experimental myoblast transplantation, any intervention upon the donor cells and/or the recipient's microenvironment aimed at enhancing proliferation and migration should be done before differentiation of the implanted cells, e.g., day 3 postengraftment.
Collapse
Affiliation(s)
- Ingo Riederer
- Thérapie des maladies du muscle strié/Institut de Myologie UM76, Université Pierre et Marie Curie, INSERM-U974; CNRS-UMR7215, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Current world literature. Curr Opin Neurol 2011; 24:511-6. [PMID: 21900773 DOI: 10.1097/wco.0b013e32834be5c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Skuk D, Goulet M, Tremblay JP. Transplanted Myoblasts Can Migrate Several Millimeters to Fuse With Damaged Myofibers in Nonhuman Primate Skeletal Muscle. J Neuropathol Exp Neurol 2011; 70:770-8. [DOI: 10.1097/nen.0b013e31822a6baa] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|