1
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Minnee RC, Fieuws S, Jochmans I, Aerts R, Sainz Barriga M, Debaveye Y, Maertens J, Vandenberghe P, Laleman W, van der Merwe S, Verslype C, Cassiman D, Ferdinande P, Nevens F, Pirenne J, Monbaliu D. Improved survival after LTx-associated acute GVHD with mAb therapy targeting IL2RAb and soluble TNFAb: Single-center experience and systematic review. Am J Transplant 2018; 18:3007-3020. [PMID: 29734503 DOI: 10.1111/ajt.14923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
Abstract
Acute graft-versus-host disease (GVHD) after liver transplant (LTx) is a rare complication with a high mortality rate. Recently, monoclonal antibody (mAb) treatment, specifically with anti-interleukin 2 receptor antibodies (IL2RAb) and anti-tumor necrosis factor-α antibodies (TNFAb), has gained increasing interest. However, evidence is mostly limited to case reports and the efficacy remains unclear. Here, we describe 5 patients with LTx-associated GVHD from our center and provide the results of our systematic literature review to evaluate the potential therapeutic benefit of IL2RAb/TNFAb treatment. Of the combined population of 155 patients (5 in our center and 150 through systematic search), 24 were given mAb (15.5%)-4 with TNFAb (2.6%) and 17 with IL2RAb (11%) ("mAb group")-and compared with patients who received other treatments (referred to as "no-mAb group"). Two-sided Fisher exact tests revealed a better survival when comparing treatment with mAb versus no-mAb (11/24 vs 27/131; P = .018), TNFAb versus no-mAb (3/4 vs 27/131; P = .034), and IL2RAb versus no-mAb (8/17 vs 27/131; P = .029). This systematic review suggests a beneficial effect of mAb treatment and a promising role for TNFAb and IL2RAb as a first-line strategy to treat LTx-associated acute GVHD.
Collapse
Affiliation(s)
- R C Minnee
- Abdominal transplant surgery and transplantation coordination, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - S Fieuws
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven-University of Leuven, Leuven, Belgium.,University Hasselt, Hasselt, Belgium
| | - I Jochmans
- Abdominal transplant surgery and transplantation coordination, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - R Aerts
- Abdominal transplant surgery and transplantation coordination, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - M Sainz Barriga
- Abdominal transplant surgery and transplantation coordination, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Y Debaveye
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - J Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - P Vandenberghe
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.,Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - W Laleman
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - S van der Merwe
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - C Verslype
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - D Cassiman
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - P Ferdinande
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - F Nevens
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - J Pirenne
- Abdominal transplant surgery and transplantation coordination, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - D Monbaliu
- Abdominal transplant surgery and transplantation coordination, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Zhang L, Yu J, Wei W. Advance in Targeted Immunotherapy for Graft-Versus-Host Disease. Front Immunol 2018; 9:1087. [PMID: 29868032 PMCID: PMC5964137 DOI: 10.3389/fimmu.2018.01087] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a serious and deadly complication of patients, who undergo hematopoietic stem cell transplantation (HSCT). Despite prophylactic treatment with immunosuppressive agents, 20–80% of recipients develop acute GVHD after HSCT. And the incidence rates of chronic GVHD range from 6 to 80%. Standard therapeutic strategies are still lacking, although considerable advances have been gained in knowing of the predisposing factors, pathology, and diagnosis of GVHD. Targeting immune cells, such as regulatory T cells, as well as tolerogenic dendritic cells or mesenchymal stromal cells (MSCs) display considerable benefit in the relief of GVHD through the deletion of alloactivated T cells. Monoclonal antibodies targeting cytokines or signaling molecules have been demonstrated to be beneficial for the prevention of GVHD. However, these remain to be verified in clinical therapy. It is also important and necessary to consider adopting individualized treatment based on GVHD subtypes, pathological mechanisms involved and stages. In the future, it is hoped that the identification of novel therapeutic targets and systematic research strategies may yield novel safe and effective approaches in clinic to improve outcomes of GVHD further. In this article, we reviewed the current advances in targeted immunotherapy for the prevention of GVHD.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Education, Ministry of China, Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui, China
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Education, Ministry of China, Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui, China
| |
Collapse
|
4
|
Hill L, Alousi A, Kebriaei P, Mehta R, Rezvani K, Shpall E. New and emerging therapies for acute and chronic graft versus host disease. Ther Adv Hematol 2018; 9:21-46. [PMID: 29317998 PMCID: PMC5753923 DOI: 10.1177/2040620717741860] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Graft versus host disease (GVHD) remains a major cause of morbidity and mortality following allogeneic hematopoietic stem-cell transplantation (HSCT). Despite the use of prophylactic GVHD regimens, a significant proportion of transplant recipients will develop acute or chronic GVHD following HSCT. Corticosteroids are standard first-line therapy, but are only effective in roughly half of all cases with ~50% of patients going on to develop steroid-refractory disease, which increases the risk of nonrelapse mortality. While progress has been made with improvements in survival outcomes over time, corticosteroids are associated with significant toxicities, and many currently available salvage therapies are associated with increased immunosuppression, infectious complications, and potential loss of the graft versus leukemia (GVL) effect. Thus, there is an unmet need for development of newer treatment strategies for both acute and chronic GVHD to improve long-term post-transplant outcomes and quality of life for HSCT recipients. Here, we provide a concise review of major emerging therapies currently being studied in the treatment of acute and chronic GVHD.
Collapse
Affiliation(s)
- LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0423, Houston, TX 77030-4000, USA
| |
Collapse
|
5
|
A phase 3 randomized trial comparing inolimomab vs usual care in steroid-resistant acute GVHD. Blood 2016; 129:643-649. [PMID: 27899357 DOI: 10.1182/blood-2016-09-738625] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Treatment of steroid-resistant acute graft-versus-host disease (GVHD) remains an unmet clinical need. Inolimomab, a monoclonal antibody to CD25, has shown encouraging results in phase 2 trials. This phase 3 randomized, open-label, multicenter trial compared inolimomab vs usual care in adult patients with steroid-refractory acute GVHD. Patients were randomly selected to receive treatment with inolimomab or usual care (the control group was treated with antithymocyte globulin [ATG]). The primary objective was to evaluate overall survival at 1 year without changing baseline allocated therapy. A total of 100 patients were randomly placed: 49 patients in the inolimomab arm and 51 patients in the ATG arm. The primary criteria were reached by 14 patients (28.5%) in the inolimomab and 11 patients (21.5%) in the ATG arms, with a hazard ratio of 0.874 (P = .28). With a minimum follow-up of 1 year, 26 (53%) and 31 (60%) patients died in the inolimomab and ATG arms, respectively. Adverse events were similar in the 2 arms, with fewer viral infections in the inolimomab arm compared with the ATG arm. The primary end point of this randomized phase 3 trial was not achieved. The lack of a statistically significant effect confirms the need for development of more effective treatments for acute GVHD. This trial is registered to https://www.clinicaltrialsregister.eu/ctr-search/search as EUDRACT 2007-005009-24.
Collapse
|
6
|
TNF-α priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood 2016; 128:866-71. [PMID: 27365424 DOI: 10.1182/blood-2016-04-711275] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023] Open
Abstract
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) have been shown to effectively prevent graft-versus-host disease (GVHD) when adoptively transferred in murine models of hematopoietic cell transplantation and in phase 1/2 clinical trials. Critical limitations to Treg clinical application are the paucity of cells and limited knowledge of the mechanisms of in vivo function. We hypothesized that inflammatory conditions in GVHD modify Treg characteristics and activity. We found that peripheral blood of recipient animals during acute GVHD (aGVHD) induces Treg activation and enhances their function. The serum contains high levels of tumor necrosis factor-α (TNF-α) that selectively activates Tregs without impacting CD4(+)FoxP3(-) T cells. TNF-α priming induces Treg in vivo proliferation, whereas it limits the ability of CD4 and CD8 conventional T cells (Tcons) to proliferate and induce GVHD. TNF-α-primed Tregs prolong animal survival as compared with unprimed Tregs when used at an unfavorable Treg:Tcon ratio, demonstrating enhanced in vivo efficacy of TNF-α-primed Tregs. Because TNF-α is produced by several immune cells during inflammation, our work elucidates aspects of the physiologic mechanisms of Treg function. Furthermore, TNF-α priming of Tregs provides a new tool to optimize Treg cellular therapies for GVHD prevention and treatment.
Collapse
|
7
|
Mesenchymal stromal cells for steroid-refractory acute GVHD. LANCET HAEMATOLOGY 2016; 3:e8-9. [DOI: 10.1016/s2352-3026(15)00252-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
|
8
|
Liu J, Guo YM, Onai N, Ohyagi H, Hirokawa M, Takahashi N, Tagawa H, Ubukawa K, Kobayashi I, Tezuka H, Minamiya Y, Ohteki T, Sawada K. Cytosine-Phosphorothionate-Guanine Oligodeoxynucleotides Exacerbates Hemophagocytosis by Inducing Tumor Necrosis Factor-Alpha Production in Mice after Bone Marrow Transplantation. Biol Blood Marrow Transplant 2015; 22:627-636. [PMID: 26740374 DOI: 10.1016/j.bbmt.2015.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Hemophagocytic syndrome (HPS) is frequently associated with hematopoietic stem cell transplantation and is treated with some benefit derived from TNF-α inhibitors. However, the mechanisms of how HPS occurs and how a TNF-α inhibitor exerts some benefit to HPS management have remained unclear. We evaluated the effect of toll-like receptor (TLR) ligands, especially focusing on cytosine-phosphorothionate-guanine oligodeoxynucleotide (CpG), a TLR9 ligand, on HPS in mice that underwent transplantation with syngeneic or allogeneic bone marrow (BM) cells (Syn-BMT, Allo-BMT), or with allogeneic BM cells plus splenocytes to promote graft-versus-host disease (GVHD mice). Hemophagocytosis was a common feature early after all BMT, but it subsided in Syn-BMT and Allo-BMT mice. In GVHD mice, however, hemophagocytosis persisted and was accompanied by upregulated production of IFN-γ but not TNF-α, and it was suppressed by blockade of IFN-γ but not TNF-α. A single injection of the TLR9 ligand CpG promoted HPS in all BMT mice and was lethal in GVHD mice, accompanied by greatly upregulated production of TNF-α, IL-6, and IFN-γ. Blocking of TNF-α, but not IL-6 or IFN-γ, suppressed CpG-induced HPS in all BMT mice and rescued GVHD mice from CpG-induced mortality. Thus, TLR9 signaling mediates TNF-α-driven HPS in BMT mice and is effectively treated through TNF-α inhibition.
Collapse
Affiliation(s)
- Jiajia Liu
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan; Department of Chest Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Nobuyuki Onai
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Hideaki Ohyagi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tezuka
- Life Science Tokyo Advanced Research Center, Hoshi University, Tokyo, Japan
| | - Yoshihiro Minamiya
- Department of Chest Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | | |
Collapse
|
9
|
Martino M, Recchia AG, Gentile M, Morabito L, Vigna E, Cuzzola M, Morabito F. Diagnostic approaches for identifying acute graft-versus-host disease: what comes next? Immunotherapy 2013; 5:553-6. [PMID: 23725276 DOI: 10.2217/imt.13.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Reikvam H, Fredly H, Kittang AO, Bruserud Ø. The possible diagnostic and prognostic use of systemic chemokine profiles in clinical medicine—the experience in acute myeloid leukemia from disease development and diagnosis via conventional chemotherapy to allogeneic stem cell transplantation. Toxins (Basel) 2013; 5:336-62. [PMID: 23430540 PMCID: PMC3640539 DOI: 10.3390/toxins5020336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/29/2022] Open
Abstract
Chemokines are important regulators of many different biological processes, including (i) inflammation with activation and local recruitment of immunocompetent cells; (ii) angiogenesis as a part of inflammation or carcinogenesis; and (iii) as a bridge between the coagulation system and inflammation/immune activation. The systemic levels of various chemokines may therefore reflect local disease processes, and such variations may thereby be used in the routine clinical handling of patients. The experience from patients with myeloproliferative diseases, and especially patients with acute myeloid leukemia (AML), suggests that systemic plasma/serum cytokine profiles can be useful, both as a diagnostic tool and for prognostication of patients. However, cytokines/chemokines are released by a wide range of cells and are involved in a wide range of biological processes; the altered levels may therefore mainly reflect the strength and nature of the biological processes, and the optimal clinical use of chemokine/cytokine analyses may therefore require combination with organ-specific biomarkers. Chemokine levels are also altered by clinical procedures, therapeutic interventions and the general status of the patients. A careful standardization of sample collection is therefore important, and the interpretation of the observations will require that the overall clinical context is considered. Despite these limitations, we conclude that analysis of systemic chemokine/cytokine profiles can reflect important clinical characteristics and, therefore, is an important scientific tool that can be used as a part of future clinical studies to identify clinically relevant biomarkers.
Collapse
Affiliation(s)
- Håkon Reikvam
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway; E-Mails: (H.R.); (H.F.)
- Institute of Medicine, University of Bergen, Bergen N-5021, Norway; E-Mail:
| | - Hanne Fredly
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway; E-Mails: (H.R.); (H.F.)
- Institute of Medicine, University of Bergen, Bergen N-5021, Norway; E-Mail:
| | | | - Øystein Bruserud
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway; E-Mails: (H.R.); (H.F.)
- Institute of Medicine, University of Bergen, Bergen N-5021, Norway; E-Mail:
| |
Collapse
|
11
|
Girmenia C, Iori AP. Safety and interactions of new antifungals in stem cell transplant recipients. Expert Opin Drug Saf 2012; 11:803-18. [DOI: 10.1517/14740338.2012.712111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Cuzzola M, Fiasché M, Iacopino P, Messina G, Martino M, Console G, Fedele R, Massi D, Recchia AG, Irrera G, Morabito F. A molecular and computational diagnostic approach identifies FOXP3, ICOS, CD52 and CASP1 as the most informative biomarkers in acute graft-versus-host disease. Haematologica 2012; 97:1532-8. [PMID: 22491736 DOI: 10.3324/haematol.2011.059980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Acute graft-versus-host disease is a severe complication of allogeneic stem cell transplantation in which the functional immune cells of the donor recognize the recipient as foreign and mount an immunological attack. There is an urgent need for better diagnostic instruments for the assessment of acute graft-versus-host disease. In the present study, a novel bioinformatics framework was used to identify gene expression patterns associated with acute graft-versushost disease in patients undergoing allogeneic hematopoietic stem cell transplantation. DESIGN AND METHODS Peripheral blood cells were collected prospectively from patients who did develop acute graftversus-host disease (YES) and from those who did not (NO). Gene expression profiling was performed using a panel of 47 candidate genes potentially involved in alloreactive responses. The entire population of YES/NO acute graft-versus-host disease patients formed the experimental validation set. Personalized modeling based on a gene selection technique was applied to identify the most significant mRNA transcripts, which were then used to profile individual data samples for training and testing the classification/prediction framework. RESULTS A leave-one-out cross-validation procedure was performed to investigate the robustness of the classification framework producing the following results: 100% on the training dataset and 97% on the testing dataset. According to our integrated methodology, transcripts for FOXP3, ICOS, CD52 and CASP1, genes involved in immune alloreactive responses and participating in immune cell interactions, were identified as the most informative biomarkers in allogeneic stem cell transplant recipients experiencing acute graft-versus-host disease. CONCLUSIONS This study demonstrates that the integrated methodology proposed is useful for the selection of valid gene targets for the diagnosis of acute graft-versus-host disease, producing satisfactory accuracy over independent clinical features of the allogeneic transplanted population.
Collapse
Affiliation(s)
- Maria Cuzzola
- Transplant Regional Center of Stem Cells and Cellular Therapy, A. Neri, Reggio Calabria, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chiang EY, Kolumam G, McCutcheon KM, Young J, Lin Z, Balazs M, Grogan JL. In vivo depletion of lymphotoxin-alpha expressing lymphocytes inhibits xenogeneic graft-versus-host-disease. PLoS One 2012; 7:e33106. [PMID: 22427961 PMCID: PMC3299734 DOI: 10.1371/journal.pone.0033106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/03/2012] [Indexed: 12/23/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major barrier to successful allogeneic hematopoietic cell transplantation and is largely mediated by activated donor lymphocytes. Lymphotoxin (LT)-α is expressed by subsets of activated T and B cells, and studies in preclinical models demonstrated that targeted depletion of these cells with a mouse anti-LT-α monoclonal antibody (mAb) was efficacious in inhibiting inflammation and autoimmune disease. Here we demonstrate that LT-α is also upregulated on activated human donor lymphocytes in a xenogeneic model of GVHD and targeted depletion of these donor cells ameliorated GVHD. A depleting humanized anti-LT-α mAb, designated MLTA3698A, was generated that specifically binds to LT-α in both the soluble and membrane-bound forms, and elicits antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Using a human peripheral blood mononuclear cell transplanted SCID (Hu-SCID) mouse model of GVHD, the anti-human LT-α mAb specifically depleted activated LT-expressing human donor T and B cells, resulting in prolonged survival of the mice. A mutation in the Fc region, rendering the mAb incapable of mediating ADCC, abolished all in vitro and in vivo effects. These data support a role for using a depleting anti-LT-α antibody in treating immune diseases such as GVHD and autoimmune diseases.
Collapse
Affiliation(s)
- Eugene Y. Chiang
- Department of Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Ganesh Kolumam
- Department of Tumor Biology and Angiogenesis, Genentech Inc., South San Francisco, California, United States of America
| | - Krista M. McCutcheon
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
| | - Judy Young
- Department of Assay and Automation Technology, Genentech Inc., South San Francisco, California, United States of America
| | - Zhonghua Lin
- Department of Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Mercedesz Balazs
- Department of Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Jane L. Grogan
- Department of Immunology, Genentech Inc., South San Francisco, California, United States of America
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Acute graft-versus-host disease (GVHD) is a considerable source of morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Accordingly, progress in the prevention and primary therapy of this complication is needed to improve patient outcomes. RECENT FINDINGS Guided by insights into acute GVHD pathogenesis, investigators have explored novel cellular and pharmacologic approaches to acute GVHD prevention that demonstrates promise. Although pan-T-cell depletion has reduced GVHD, novel strategies that selectively deplete alloreactive T cells or modulate the balance of effector T cells and regulatory T cells offer promise to selectively abrogate acute GVHD while retaining protection from primary disease relapse and infectious complications. SUMMARY Divergent approaches in the primary therapy of acute GVHD have explored both combination approaches with standard dose glucocorticoids and additional immunosuppressive agents and conversely steroid-sparing approaches including topical agents such as beclomethasone or sirolimus as a steroid-free approach to acute GVHD therapy. Mature results of high-quality clinical trials are needed to determine the optimal therapy that results in effective control of the syndrome and limited toxicity. These complementary outcomes represent the therapeutic goal for future investigation in acute GVHD therapy.
Collapse
|