1
|
Zhang M, Ge Y, Xu S, Fang X, Meng J, Yu L, Wang C, Liu J, Wen T, Yang Y, Wang C, Xu H. Nanomicelles co-loading CXCR4 antagonist and doxorubicin combat the refractory acute myeloid leukemia. Pharmacol Res 2022; 185:106503. [DOI: 10.1016/j.phrs.2022.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
|
2
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
3
|
Geskovski N, Matevska-Geshkovska N, Dimchevska Sazdovska S, Glavas Dodov M, Mladenovska K, Goracinova K. The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:375-401. [PMID: 33981532 PMCID: PMC8093552 DOI: 10.3762/bjnano.12.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 05/21/2023]
Abstract
Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of data related to the unique molecular signatures of each tumor subtype, have emerged as an important tool for detailed profiling of tumors. They provide an opportunity to develop targeting agents for early detection and diagnosis, and to select the most effective combinatorial treatment options. Alongside, the design of the nanoscale carriers needs to cope with novel trends of molecular screening. Also, multiple targeting ligands needed for robust and specific interactions with the targeted cell populations have to be introduced, which should result in substantial improvements in safety and efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future chemotherapeutic protocols.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Nadica Matevska-Geshkovska
- Center for Pharmaceutical Biomolecular Analyses, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- Department of Nanobiotechnology, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Kristina Mladenovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Li Z, Zhang Y, Zhu C, Guo T, Xia Q, Hou X, Liu W, Feng N. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int J Pharm 2020; 586:119576. [PMID: 32603839 DOI: 10.1016/j.ijpharm.2020.119576] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022]
Abstract
In this work, paclitaxel (Ptx) combined with tanshinone IIA (TanIIA) was found to show synergistic effect on inducing apoptosis of human acute promyelocytic leukemia (APL) cell line NB4, and the anti-tumor effect was strongest when its molar ratio was 1:1. To enhance the efficacy and reduce side effects, an active targeting drug delivery system with mesoporous silica nanoparticles (MSNs) coated with folic acid (FA) modified PEGylated lipid-bilayer (LB) membrane (FA-LB-MSNs) was established for co-loading drugs. The drug loadings of Ptx and TanIIA in FA-LB-MSNs were 5.5% and 1.8%, respectively. Compared with the uncoated MSNs, the FA-LB-MSNs showed a sustained drug release, and Ptx and TanIIA released synchronously from the carriers. By means of biological adhesion between FA and its receptors, the uptake of FA-LB-MSNs by NB4 cells was significantly higher than that of uncoated preparations, and Ptx combined with TanIIA had strong synergistic effect to enhance the apoptosis and differentiation of NB4 cells. The results of pharmacodynamics in vivo showed that the FA-LB-MSNs targeted tumor in nude mice more effectively than the compared formulations without FA modification. The Ptx and TanIIA-loaded FA-LB-MSNs group showed significantly better effects on inducing apoptosis and inhibiting tumor growth than the reference groups, which agreed with the results of anti-tumor experiments in vitro. Furthermore, no toxicity was observed to the heart, liver, spleen, lung and kidney of the tumor-bearing animals, indicating good biocompatibility of the prepared novel nanocarriers. This study confirmed the synergistic therapeutic effect of Ptx and TanIIA on APL, and the superior of FA-LB-MSNs as co-loaded nanocarriers for active targeted therapy of tumors.
Collapse
Affiliation(s)
- Zhe Li
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park Pudong New District, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park Pudong New District, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park Pudong New District, Shanghai 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park Pudong New District, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park Pudong New District, Shanghai 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park Pudong New District, Shanghai 201203, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park Pudong New District, Shanghai 201203, China.
| |
Collapse
|
5
|
Leve F, Bonfim DP, Fontes G, Morgado-Díaz JA. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine (Lond) 2019; 14:1565-1578. [PMID: 31215349 DOI: 10.2217/nnm-2019-0023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: Colon cancer (CC) is the second cause of cancer death worldwide. The use of nanoparticles for drug delivery has been increasing in cancer clinical trials over recent years. Materials & methods: We evaluated cytotoxicity of citrate-capped gold nanoparticles (GNPs) and the role they play on cell-cell adhesion. We also used GNP for delivery of cetuximab into different CC cell lines. Results: CC cells with well-formed tight junctions impair GNP uptake. Noncytotoxic concentration of GNP increases paracellular permeability in Caco-2 cells in a reversible way, concomitantly to tight junctions proteins CLDN1 and ZO-1 redistribution. GNP functionalized with cetuximab increases death of invasive HCT-116 CC cells. Conclusion: GNP can be used for drug delivery and can improve efficiency of CC therapy.
Collapse
Affiliation(s)
- Fernanda Leve
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Daniella P Bonfim
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Giselle Fontes
- Cellular & Molecular Oncobiology Program, National Institute of Cancer (INCa), Rio de Janeiro, Brazil
| | - José A Morgado-Díaz
- Microscopy Applied to Life Sciences Laboratory (Lamav), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
6
|
Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials 2018; 155:191-202. [DOI: 10.1016/j.biomaterials.2017.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/26/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022]
|
7
|
Yang Y, Zhao H, Jia Y, Guo Q, Qu Y, Su J, Lu X, Zhao Y, Qian Z. A novel gene delivery composite system based on biodegradable folate-poly (ester amine) polymer and thermosensitive hydrogel for sustained gene release. Sci Rep 2016; 6:21402. [PMID: 26883682 PMCID: PMC4756671 DOI: 10.1038/srep21402] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) polymer and thermosensitive PECE hydrogel showed potential for sustained gene release.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Hang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - YanPeng Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - QingFa Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Ying Qu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Jing Su
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, 22 Shuang Yong Rd. Nanning, Guangxi 530021, China
| | - XiaoLing Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, 22 Shuang Yong Rd. Nanning, Guangxi 530021, China
| | - YongXiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, 22 Shuang Yong Rd. Nanning, Guangxi 530021, China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| |
Collapse
|
8
|
Han MH, Li ZT, Bi DD, Guo YF, Kuang HX, Wang XT. Novel folate-targeted docetaxel-loaded nanoparticles for tumour targeting: in vitro and in vivo evaluation. RSC Adv 2016. [DOI: 10.1039/c6ra04466b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholesterol-PEG1000-FA (folic acid) was synthesized as a stabilizer to encapsulate DTX, for the construction of a promising targeted delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- M. H. Han
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Z. T. Li
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - D. D. Bi
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Y. F. Guo
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - H. X. Kuang
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - X. T. Wang
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| |
Collapse
|
9
|
Puvvada N, Rajput S, Kumar BNP, Sarkar S, Konar S, Brunt KR, Rao RR, Mazumdar A, Das SK, Basu R, Fisher PB, Mandal M, Pathak A. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Sci Rep 2015; 5:11760. [PMID: 26145450 PMCID: PMC4491843 DOI: 10.1038/srep11760] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.
Collapse
Affiliation(s)
- Nagaprasad Puvvada
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Dalhousie University, New Brunswick, Canada
| | - Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - B N Prashanth Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine; Richmond, VA 23298, USA
| | - Suraj Konar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Dalhousie University, New Brunswick, Canada
| | - Raj R Rao
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23238, USA
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention and Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine; Richmond, VA 23298, USA.,VCU Institute of Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA
| | - Ranadhir Basu
- Central Research Facility, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine; Richmond, VA 23298, USA.,VCU Institute of Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
10
|
Drug resistance to chlorambucil in murine B-cell leukemic cells is overcome by its conjugation to a targeting peptide. Anticancer Drugs 2013. [PMID: 23187462 DOI: 10.1097/cad.0b013e32835bb17a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeting drugs through small-molecule carriers with a high affinity to receptors on cancer cells can overcome the lack of target cell specificity of most anticancer drugs. These targeted carrier-drug conjugates are also capable of reversing drug resistance in cancer cells. Although many targeted drug delivery approaches are being tested, the linkage of several and different drugs to a single carrier molecule might further enhance their therapeutic efficacy, particularly if the drugs are engineered for variable time release. This report shows that murine B-cell leukemic cells previously resistant to a chemotherapeutic drug can be made sensitive to that drug as long as it is conjugated to a targeting peptide and, in particular, when the conjugate contains multiple copies of the drug. Using a 13mer peptide (VHFFKNIVTPRTP) derived from the myelin basic protein (p-MBP), dendrimer-based peptide conjugates containing one, two, or four molecules of chlorambucil were synthesized. Although murine hybridomas expressing antibodies to either p-MBP (MBP cells) or a nonrelevant antigen (BCL-1 cells) were both resistant to free chlorambucil, exposure of the cells to the p-MBP-chlorambucil conjugate completely reversed the drug resistance in MBP, but not BCL-1 cells or normal spleen cells. Moreover, at equivalent drug doses, there was significant enhancement in the cytotoxic activity of multidrug versus single-drug copy conjugates. On the basis of these results, the use of multifunctional dendrone linkers bearing several covalently bound cytotoxic agents allows the development of more effective targeted drug systems and enhances the efficacy of currently approved drugs for B-cell leukemia.
Collapse
|
11
|
PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials 2013; 34:251-61. [DOI: 10.1016/j.biomaterials.2012.09.039] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 11/24/2022]
|
12
|
Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 2012; 31:593-606. [PMID: 23111203 DOI: 10.1016/j.biotechadv.2012.10.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/07/2012] [Accepted: 10/22/2012] [Indexed: 12/21/2022]
Abstract
The application of nanotechnology in medicine, known as nanomedicine, has introduced a plethora of nanoparticles of variable chemistry and design considerations for cancer diagnosis and treatment. One of the most important field is the design and development of pharmaceutical drugs, based on targeted drug delivery system (TDDS). Being inspired by physio-chemical properties of nanoparticles, TDDS are designed to safely reach their targets and specifically release their cargo at the site of disease for enhanced therapeutic effects, thereby increasing the drug tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in cancer cells. However, even after rapid growth of nanotechnology in nanomedicine, designing an effective targeted drug delivery system is still a challenging task. In this review, we reveal the recent advances in drug delivery approach with a particular focus on gold nanoparticles. We seek to expound on how these nanomaterials communicate in the complex environment to reach the target site, and how to design the effective TDDS for complex environments and simultaneously monitor the toxicity on the basis of designing such delivery complexes. Hence, this review will shed light on the research, opportunities and challenges for engineering nanomaterials with cancer biology and medicine to develop effective TDDS for treatment of cancer.
Collapse
|
13
|
Yadav AK, Agarwal A, Rai G, Mishra P, Jain S, Mishra AK, Agrawal H, Agrawal GP. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Drug Deliv 2011; 17:561-72. [PMID: 20738221 DOI: 10.3109/10717544.2010.500635] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present investigation was aimed to develop and explore the prospective of engineered PLGA nanoparticles as vehicles for targeted delivery of 5-fluorouracil (5-FU). Nanoparticles of 5-FU-loaded hyaluronic acid-poly(ethylene glycol)-poly(lactide-co-glycolide) (HA-PEG-PLGA-FU) copolymer were prepared and characterized by FTIR, NMR, transmission electron microscopy, particle size analysis, DSC, and X-ray diffractometer measurement studies. The nanoparticulate formulation was evaluated for in vitro release, hemolytic toxicity, and hematological toxicity. Cytotoxicity studies were performed on Ehrlich ascites tumor (EAT) cell lines using MTT cell proliferation assay. Biodistribution studies of 99m Tc labeled formulation were conducted on EAT-bearing mice. The in vivo tumor inhibition study was also performed after i.v. administration of HA-PEG-PLGA-FU nanoparticles. The HA conjugated formulation was found to be less hemolytic but more cytotoxic as compared to free drug. The hematological data suggested that HA-PEG-PLGA-FU formulation was less immunogenic compared to plain drug. The tissue distribution studies displayed that HA-PEG-PLGA-FU were able to deliver a higher concentration of 5-FU in the tumor mass. In addition, the HA-PEG-PLGA-FU nanoparticles reduced tumor volume significantly in comparison with 5-FU. Thus, it was concluded that the conjugation of HA imparts targetability to the formulation, and enhanced permeation and retention effect ruled out its access to the non-tumor tissues, at the same time favored selective entry in tumors, thereby reducing the side-effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Awesh K Yadav
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar, India
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.04.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Elnakat H, Gonit M, D’Alincourt Salazar M, Zhang J, Basrur V, Gunning W, Kamen B, Ratnam M. Regulation of Folate Receptor Internalization by Protein Kinase C α. Biochemistry 2009; 48:8249-60. [DOI: 10.1021/bi900565t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hala Elnakat
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Mesfin Gonit
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Marcela D’Alincourt Salazar
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Juan Zhang
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
- Crown BioScience, Inc., Beijing, China
| | - Venkatesha Basrur
- Division of Pathology Informatics, Department of Pathology, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, Michigan 48109
| | - William Gunning
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Barton Kamen
- UMDNJ-R. W. Johnson Medical School, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08901
| | - Manohar Ratnam
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| |
Collapse
|
16
|
van der Heijden JW, Oerlemans R, Dijkmans BAC, Qi H, van der Laken CJ, Lems WF, Jackman AL, Kraan MC, Tak PP, Ratnam M, Jansen G. Folate receptor beta as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. ACTA ACUST UNITED AC 2009; 60:12-21. [PMID: 19116913 DOI: 10.1002/art.24219] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine the expression of folate receptor beta (FRbeta) in synovial biopsy tissues and peripheral blood lymphocytes from rheumatoid arthritis (RA) patients and to identify novel folate antagonists that are more selective in the targeting and internalization of FRbeta than methotrexate (MTX). METHODS Immunohistochemistry and computer-assisted digital imaging analyses were used for the detection of FRbeta protein expression on immunocompetent cells in synovial biopsy samples from RA patients with active disease and in noninflammatory control synovial tissues. FRbeta messenger RNA (mRNA) levels were determined by reverse transcription-polymerase chain reaction analysis. Binding affinities of FRbeta for folate antagonists were assessed by competition experiments for 3H-folic acid binding on FRbeta-transfected cells. Efficacy of FRbeta-mediated internalization of folate antagonists was evaluated by assessment of antiproliferative effects against FRbeta-transfected cells. RESULTS Immunohistochemical staining of RA synovial tissue showed high expression of FRbeta on macrophages in the intimal lining layer and synovial sublining, whereas no staining was observed in T cell areas or in control synovial tissue. Consistently, FRbeta mRNA levels were highest in synovial tissue extracts and RA monocyte-derived macrophages, but low in peripheral blood T cells and monocytes. Screening of 10 new-generation folate antagonists revealed 4 compounds for which FRbeta had a high binding affinity (20-77-fold higher than for MTX). One of these, the thymidylate synthase inhibitor BCG 945, displayed selective targeting against FRbeta-transfected cells. CONCLUSION Abundant FRbeta expression on activated macrophages in synovial tissue from RA patients deserves further exploration for selective therapeutic interventions with high-affinity-binding folate antagonists, of which BCG 945 may be a prototypical representative.
Collapse
|
17
|
Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60:1615-26. [PMID: 18840489 DOI: 10.1016/j.addr.2008.08.005] [Citation(s) in RCA: 1136] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/28/2008] [Indexed: 12/21/2022]
Abstract
The objective of this review is to outline current major cancer targets for nanoparticle systems and give insight into the direction of the field. The major targeting strategies that have been used for the delivery of therapeutic or imaging agents to cancer have been broken into three sections. These sections are angiogenesis-associated targeting, targeting to uncontrolled cell proliferation markers, and tumor cell targeting. The targeting schemes explored for many of the reported nanoparticle systems suggest the great potential of targeted delivery to revolutionize cancer treatment.
Collapse
|
18
|
KIM S. Folate-tethered emulsion for the target delivery of retinoids to cancer cells. Eur J Pharm Biopharm 2008; 68:618-25. [DOI: 10.1016/j.ejpb.2007.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 06/11/2007] [Accepted: 08/17/2007] [Indexed: 11/29/2022]
|
19
|
Agarwal A, Saraf S, Asthana A, Gupta U, Gajbhiye V, Jain NK. Ligand based dendritic systems for tumor targeting. Int J Pharm 2007; 350:3-13. [PMID: 18162345 DOI: 10.1016/j.ijpharm.2007.09.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 09/12/2007] [Accepted: 09/19/2007] [Indexed: 01/19/2023]
Abstract
Medications that can selectively target tumors at the same time avoid access of the drug to nontarget areas, employ utilization of homing devices termed as ligands, that can bind to specific epitopes expressed on the surface of the necrotic mass of cells. Molecular signatures for transferrin, Epidermal Growth Factor, Sialic Lewis and folic acid are expressed on the surface of these cells. Dendrimers are nanosized, non-immunogenic, and hyper-branched vehicles that can be efficiently tailored for spatial distribution of bioactives, thereby reducing untoward cytotoxicity on normal cells. These nanoparticulate drug delivery vehicles provide a unique platform that has precisely placed functional groups so that multiple copies of ligands can be attached to it and facilitate targeting to the tumor surface or neo-vascularizing vessels proliferating around these cells. The article reviews the scope of ligand based dendritic system as a prospective for delivery of anti-cancer drugs, via active targeting with interception of minimal side effects.
Collapse
Affiliation(s)
- Abhinav Agarwal
- Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar 470003, MP, India
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
For over a decade the folate receptor has been intensively investigated as a means for tumor-specific delivery of a broad range of experimental therapies including several conceptually new treatments. Despite a few set backs in clinical trials, the literature is replete with encouraging in vitro and pre-clinical studies of gynecological and other tumors and more therapeutic approaches are ready for clinical testing. Recent studies have added myelogenous leukemias to the list of candidate cancers for FR-targeted therapies. Each approach faces unique challenges in translation that could be addressed through a mechanistic understanding of the function and expression of the receptor in the appropriate experimental systems and by improvements in the technology. This review discusses FR in the context of positive recent developments in broad areas of FR-targeted therapy and attempts to highlight its potential and the anticipated challenges.
Collapse
|
21
|
Qi H, Ratnam M. Synergistic induction of folate receptor beta by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Res 2006; 66:5875-82. [PMID: 16740727 DOI: 10.1158/0008-5472.can-05-4048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The folate receptor (FR) type beta is a promising target for therapeutic intervention in acute myelogenous leukemia (AML), owing particularly to its selective up-regulation in the leukemic cells by all-trans retinoic acid (ATRA). Here we show, using KG-1 and MV4-11 AML cells and recombinant 293 cells, that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA), valproic acid (VPA), and FK228 potentiated ATRA induction of FR-beta gene transcription and FR-beta mRNA/protein expression. ATRA and/or TSA did not induce de novo FR synthesis in any of a variety of FR-negative cell lines tested. TSA did not alter the effect of ATRA on the expression of retinoic acid receptor (RAR) alpha, beta, or gamma. Chromatin immunoprecipitation assays indicate that HDAC inhibitors act on the FR-beta gene by enhancing RAR-associated histone acetylation to increase the association of Sp1 with the basal FR-beta promoter. Under these conditions, the expression level of Sp1 is unaltered. A decreased availability of putative repressor AP-1 proteins may also indirectly contribute to the effect of HDAC inhibitors. Finally, FR-beta selectively mediated growth inhibition by (6S) dideazatetrahydrofolate in a manner that was greatly potentiated in AML cells by ATRA and HDAC inhibition. Therefore, the combination of ATRA and innocuous HDAC inhibitors may be expected to facilitate selective FR-beta-targeted therapies in AML.
Collapse
MESH Headings
- Acetylation/drug effects
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- CHO Cells
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cricetinae
- Drug Synergism
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Folate Receptors, GPI-Anchored
- Folic Acid Antagonists/administration & dosage
- Folic Acid Antagonists/pharmacology
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/administration & dosage
- Hydroxamic Acids/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/classification
- Receptors, Retinoic Acid/metabolism
- Substrate Specificity
- Tetrahydrofolates/administration & dosage
- Tetrahydrofolates/pharmacology
- Transcription Factor AP-1/metabolism
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Up-Regulation/drug effects
- Valproic Acid/administration & dosage
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Huiling Qi
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, Ohio, USA
| | | |
Collapse
|
22
|
Tran T, Shatnawi A, Zheng X, Kelley KMM, Ratnam M. Enhancement of folate receptor alpha expression in tumor cells through the glucocorticoid receptor: a promising means to improved tumor detection and targeting. Cancer Res 2005; 65:4431-41. [PMID: 15899836 DOI: 10.1158/0008-5472.can-04-2890] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The utility of the folate receptor (FR) type alpha, in a broad range of targeted therapies and as a diagnostic serum marker in cancer, is confounded by its variable tumor expression levels. FR-alpha, its mRNA and its promoter activity were coordinately up-regulated by the glucocorticoid receptor (GR) agonist, dexamethasone. Optimal promoter activation which occurred at <50 nmol/L dexamethasone was inhibited by the GR antagonist, RU486, and was enhanced by coactivators, supporting GR mediation of the dexamethasone effect. The dexamethasone response of the FR-alpha promoter progressed even after dexamethasone was withdrawn, but this delayed effect required prior de novo protein synthesis indicating an indirect regulation. The dexamethasone effect was mediated by the G/C-rich (Sp1 binding) element in the core P4 promoter and was optimal in the proper initiator context without associated changes in the complement of major Sp family proteins. Histone deacetylase (HDAC) inhibitors potentiated dexamethasone induction of FR-alpha independent of changes in GR levels. Dexamethasone/HDAC inhibitor treatment did not cause de novo FR-alpha expression in a variety of receptor-negative cells. In a murine HeLa cell tumor xenograft model, dexamethasone treatment increased both tumor-associated and serum FR-alpha. The results support the concept of increasing FR-alpha expression selectively in the receptor-positive tumors by brief treatment with a nontoxic dose of a GR agonist, alone or in combination with a well-tolerated HDAC inhibitor, to increase the efficacy of various FR-alpha-dependent therapeutic and diagnostic applications. They also offer a new paradigm for cancer diagnosis and combination therapy that includes altering a marker or a target protein expression using general transcription modulators.
Collapse
Affiliation(s)
- Thuyet Tran
- Department of Biochemistry and Cancer Biology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Tumour cell-targeted liposomal delivery has the potential to enhance the therapeutic efficacy and reduce the toxicity of anticancer agents. Folate receptor (FR) expression is frequently amplified among human malignancies. FR is, therefore, potentially useful as a tumour marker for targeted drug delivery. FR-mediated liposomal delivery has been shown to enhance the antitumour efficacy of doxorubicin both in vitro and in vivo, and to overcome P-glycoprotein-mediated multi-drug resistance. In addition, FR-targeted liposomes have shown utility as effective delivery vehicles of genes and antisense oligodeoxyribonucleotides to FR(+) tumour cells. Both solid tumours and leukaemias can potentially benefit from FR-targeted drug delivery. Multiple mechanisms might contribute to greater therapeutic efficacy for FR-targeted liposomes, such as FR-dependent cytotoxicity and antiangiogenic activity. Further investigation of this promising drug delivery strategy is clearly warranted.
Collapse
Affiliation(s)
- Xiaogang Pan
- The Ohio State University, Division of Pharmaceutics, College of Pharmacy and Comprehensive Cancer Center, 500 W. 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
24
|
Abstract
The human folate receptor (hFR) is a glycosylphosphatidy-linositol (GPI) linked plasma membrane protein that mediates delivery of folates into cells. We studied the sorting of the hFR using transfection of the hFR cDNA into MDCK cells. MDCK cells are polarized epithelial cells that preferentially sort GPI-linked proteins to their apical membrane. Unlike other GPI-tailed proteins, we found that in MDCK cells, hFR is functional on both the apical and basolateral surfaces. We verified that the same hFR cDNA that transfected into CHO cells produces the hFR protein that is GPI-linked. We also measured the hFR expression on the plasma membrane of type III paroxysmal nocturnal hemoglobinuria (PNH) human erythrocytes. PNH is a disease that is characterized by the inability of cells to express membrane proteins requiring a GPI anchor. Despite this defect, and different from other GPI-tailed proteins, we found similar levels of hFR in normal and type III PNH human erythrocytes. The results suggest the hypothesis that there may be multiple mechanisms for targeting hFR to the plasma membrane.
Collapse
Affiliation(s)
- Chong-Ho Kim
- Department of Clinical Pathology, Wonkwang Health Science College, Iksan 570-750, Korea.
| | | | | | | |
Collapse
|