1
|
Clarke JM, Morse MA, Lyerly HK, Clay T, Osada T. Adenovirus vaccine immunotherapy targeting WT1-expressing tumors. Expert Opin Biol Ther 2010; 10:875-83. [DOI: 10.1517/14712591003798278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Sverdlov ED. Not gene therapy, but genetic surgery-the right strategy to attack cancer. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY : MOLEKULYARNAYA GENETIKA, MIKROBIOLOGIYA I VIRUSOLOGIYA 2009; 24:93-113. [PMID: 32214647 PMCID: PMC7089455 DOI: 10.3103/s089141680903001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, I will suggest to divide all the approaches united now under common term "gene therapy" into two broad strategies of which the first one uses the methodology of targeted therapy with all its characteristics, but with genes in the role of agents targeted at a certain molecular component(s) presumably crucial for cancer maintenance. In contrast, the techniques of the other strategy are aimed at the destruction of tumors as a whole using the features shared by all cancers, for example relatively fast mitotic cell division or active angiogenesis. While the first strategy is "true" gene therapy, the second one is more like genetic surgery when a surgeon just cuts off a tumor with his scalpel and has no interest in knowing delicate mechanisms of cancer emergence and progression. I will try to substantiate the idea that the last strategy is the only right one, and its simplicity is paradoxically adequate to the super-complexity of tumors that originates from general complexity of cell regulation, strongly disturbed in tumor cells, and especially from the complexity of tumors as evolving cell populations, affecting also their ecological niche formed by neighboring normal cells and tissues. An analysis of the most widely used for such a "surgery" suicide gene/prodrug combinations will be presented in some more details.
Collapse
Affiliation(s)
- E D Sverdlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAN, Moscow, Russia
| |
Collapse
|
3
|
Chen JL, Hu Y, Shuai WP, Chen HL, Liang WQ, Gao JQ. Telomerase-targeting antisense oligonucleotides carried by polycation liposomes enhance the growth inhibition effect on tumor cells. J Biomed Mater Res B Appl Biomater 2009; 89:362-368. [PMID: 18837440 DOI: 10.1002/jbm.b.31224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, a novel nonviral gene delivery system, which could enhance the inhibition effect of antisense oligonucleotides (ASODN) against the tumor cells, was developed. The polycation liposomes (PCLs) were prepared using the film hydration method with dioleoylphosphatidylethanolamine (DOPE) and amphipathic compound polyethylenimine-cholesterol (PEI 800-Chol), synthesized by low-molecular-weight polyethylenimine (PEI, MW 800) covalent conjugation with cholesterol. The formation of PEI 800-Chol was confirmed by IR and critical micelle concentration detection. The transfection efficiency of PCLs mediating Green Fluorescence Protein plasmid (pEGFP) in HeLa cells was evaluated and the highest gene expression was obtained by PCLs containing DOPE, which was 1.6-fold of that induced by commercial Lipofectamine 2000, and the gene expression efficiency was influenced in the present of serum. Subsequently, human telomerase reverse transcriptase gene antisense oligonucleotides (hTERT-ASODN) were used as therapeutic gene, and the results showed that PCLs, which demonstrated very low cytotoxicity itself, could significantly enhance the inhibition efficiency of hTERT-ASODN in the growth of tumor cells. These results suggested that the PCLs could be widely applied for ASODN delivery.
Collapse
Affiliation(s)
- Jin-Liang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Pharmaceutical College, Ningbo, Zhejiang, People's Republic of China
| | - Wu-Ping Shuai
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Hai-Liang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wen-Quan Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jian-Qing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Han M, Chen JL, Hu Y, He CL, Shuai WP, Yu JH, Chen HL, Liang WQ, Mayumi T, Shinsaku N, Gao JQ. In vitro and in vivo tumor suppressive activity induced by human telomerase transcriptase-targeting antisense oligonucleotides mediated by cationic liposomes. J Biosci Bioeng 2009; 106:243-7. [PMID: 18929999 DOI: 10.1263/jbb.106.243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/09/2008] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the in vitro and in vivo influence of cationic liposomes on the tumor suppressive effect of antisense telomerase oligodeoxynucleotides to human cervical adenocarcinoma cells (HeLa). Antisense oligodeoxynucleotides (ASODN) against the human telomerase transcriptase (hTERT) served as telomerase inhibitors. The cholesterol derivative, 3beta [N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), was synthesized, and cationic liposomes (CL) were prepared using DC-Chol and dioleoylphosphatidylethanolamine (DOPE). The in vitro IC50 of the CL-ASODN complex was 1.88 mumol/l, while the IC50 of the cells treated with free ASODNs or CL alone was 25.24 mumol/l and 55.18 mumol/l, respectively. The CL-ASODN complex inhibited HeLa cell growth for at least 120 h. In vivo, the CL-ASODN complex inhibited the tumor growth rate by 55.11%, which increased to 89.47% when CL-ASODN was combined with 5-fluorouracil treatment. ASODNs alone failed to induce tumor-suppressive activity, suggesting that CL prepared from DOPE and DC-Chol can significantly enhance the growth inhibitory effect of ASODN on tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26:5896-903. [PMID: 19029422 DOI: 10.1200/jco.2007.15.6794] [Citation(s) in RCA: 439] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Gene-based immunotherapy for cancer is limited by the lack of safe, efficient, reproducible, and titratable delivery methods. Direct injection of DNA into tissue, although safer than viral vectors, suffers from low gene transfer efficiency. In vivo electroporation, in preclinical models, significantly enhances gene transfer efficiency while retaining the safety advantages of plasmid DNA. PATIENTS AND METHODS A phase I dose escalation trial of plasmid interleukin (IL)-12 electroporation was carried out in patients with metastatic melanoma. Patients received electroporation on days 1, 5, and 8 during a single 39-day cycle, into metastatic melanoma lesions with six 100-mus pulses at a 1,300-V/cm electric field through a penetrating six-electrode array immediately after DNA injection. Pre- and post-treatment biopsies were obtained at defined time points for detailed histologic evaluation and determination of IL-12 protein levels. RESULTS Twenty-four patients were treated at seven dose levels, with minimal systemic toxicity. Transient pain after electroporation was the major adverse effect. Post-treatment biopsies showed plasmid dose proportional increases in IL-12 protein levels as well as marked tumor necrosis and lymphocytic infiltrate. Two (10%) of 19 patients with nonelectroporated distant lesions and no other systemic therapy showed complete regression of all metastases, whereas eight additional patients (42%) showed disease stabilization or partial response. CONCLUSION This report describes the first human trial, to our knowledge, of gene transfer utilizing in vivo DNA electroporation. The results indicated this modality to be safe, effective, reproducible, and titratable.
Collapse
Affiliation(s)
- Adil I Daud
- Cutaneous Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center, University of South Florida, Tampa, FL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Syed V, Mak P, Du C, Balaji KC. Beta-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. J Cell Biochem 2008; 104:82-95. [PMID: 17979146 DOI: 10.1002/jcb.21603] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that Protein Kinase D1 (PKD1) interacts with E-cadherin and is associated with altered cell aggregation and motility in prostate cancer (PC). Because both PKD1 and E-cadherin are known to be dysregulated in PC, in this study we investigated the functional consequences of combined dysregulation of PKD1 and E-cadherin using a panel of human PC cell lines. Gain and loss of function studies were carried out by either transfecting PC cells with full-length E-cadherin and/or PKD1 cDNA or by protein silencing by siRNAs, respectively. We studied major malignant phenotypic characteristics including cell proliferation, motility, and invasion at the cellular level, which were corroborated with appropriate changes in representative molecular markers. Down regulation or ectopic expression of either E-cadherin or PKD1 significantly increased or decreased cell proliferation, motility, and invasion, respectively, and combined down regulation cumulatively influenced the effects. Loss of PKD1 or E-cadherin expression was associated with increased expression of the pro-survival molecular markers survivin, beta-catenin, cyclin-D, and c-myc, whereas overexpression of PKD1 and/or E-cadherin resulted in an increase of caspases. The inhibitory effect of PKD1 and E-cadherin on cell proliferation was rescued by coexpression with beta-catenin, suggesting that beta-catenin mediates the effect of proliferation by PKD1 and E-cadherin. This study establishes the functional significance of combined dysregulation of PKD1 and E-cadherin in PC and that their effect on cell growth is mediated by beta-catenin.
Collapse
Affiliation(s)
- Viqar Syed
- Division of Urology, Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
7
|
Wei MQ, Ren R, Good D, Anné J. Clostridial spores as live 'Trojan horse' vectors for cancer gene therapy: comparison with viral delivery systems. GENETIC VACCINES AND THERAPY 2008; 6:8. [PMID: 18279524 PMCID: PMC2267465 DOI: 10.1186/1479-0556-6-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 02/17/2008] [Indexed: 01/14/2023]
Abstract
Solid tumours account for 90% of all cancers. Gene therapy represents a potential new modality for their treatment. Up to now, several approaches have been developed, but the most efficient ones are the viral vector based gene therapy systems. However, viral vectors suffer from several deficiencies: firstly most vectors currently in use require intratumoural injection to elicit an effect. This is far from ideal as many tumours are inaccessible and many may have already spread to other parts of the body, making them difficult to locate and inject gene therapy vectors into. Second, because of cell heterogeneity within a given cancer, the vectors do not efficiently enter and kill every cancer cell. Third, hypoxia, a prevalent characteristic feature of most solid tumours, reduces the ability of the viral vectors to function and decreases viral gene expression and production. Consequently, a proportion of the tumour is left unaffected, from which tumour regrowth occurs. Thus, cancer gene therapy has yet to realise its full potential. The facultative or obligate anaerobic bacteria have been shown to selectively colonise and regerminate in solid tumours when delivered systemically. Among them, the clostridial spores were easy to produce, stable to store and safe to use as well as having extensive oncolytic ability. However, research in animals and humans has shown that oncolysis was almost always interrupted sharply at the outer rim of the viable tumour tissue where the blood supply was sufficient. These clostridial spores, though, could serve as "Trojan horse" for cancer gene therapy. Indeed, various spores harbouring genes for cancerstatic factors, prodrug enzymes, or proteins or cytokines had endowed with additional tumour-killing capability. Furthermore, combination of these "Trojan horses" with conventional chemotherapy or radiation therapies often significantly perform better, resulting in the "cure" of solid tumours in a high percentage of animals. It is, thus, not too difficult to predict the potential outcomes for the use of clostridial spores as "Trojan horse" vectors for oncolytic therapy when compared with viral vector-mediated cancer therapy for it be replication-deficient or competent. However, to move the "Trojan horse" to a clinic, though, additional requirements need to be satisfied (i) target tumours only and not anywhere else, and (ii) be able to completely kill primary tumours as well as metastases. Current technologies are in place to achieve these goals.
Collapse
Affiliation(s)
- Ming Q Wei
- Department of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, 4032, Australia
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, GH1, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Ruimei Ren
- Department of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, 4032, Australia
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, GH1, Griffith University, Gold Coast, Queensland, 4222, Australia
- Tumour Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, PR China
| | - David Good
- Department of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, 4032, Australia
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, GH1, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Jozef Anné
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
8
|
Guo ZS, Thorne SH, Bartlett DL. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta Rev Cancer 2008; 1785:217-31. [PMID: 18328829 DOI: 10.1016/j.bbcan.2008.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 01/13/2023]
Abstract
Tremendous advances have been made in developing oncolytic viruses (OVs) in the last few years. By taking advantage of current knowledge in cancer biology and virology, specific OVs have been genetically engineered to target specific molecules or signal transduction pathways in cancer cells in order to achieve efficient and selective replication. The viral infection and amplification eventually induce cancer cells into cell death pathways and elicit host antitumor immune responses to further help eliminate cancer cells. Specifically targeted molecules or signaling pathways (such as RB/E2F/p16, p53, IFN, PKR, EGFR, Ras, Wnt, anti-apoptosis or hypoxia) in cancer cells or tumor microenvironment have been studied and dissected with a variety of OVs such as adenovirus, herpes simplex virus, poxvirus, vesicular stomatitis virus, measles virus, Newcastle disease virus, influenza virus and reovirus, setting the molecular basis for further improvements in the near future. Another exciting new area of research has been the harnessing of naturally tumor-homing cells as carrier cells (or cellular vehicles) to deliver OVs to tumors. The trafficking of these tumor-homing cells (stem cells, immune cells and cancer cells), which support proliferation of the viruses, is mediated by specific chemokines and cell adhesion molecules and we are just beginning to understand the roles of these molecules. Finally, we will highlight some avenues deserving further study in order to achieve the ultimate goals of utilizing various OVs for effective cancer treatment.
Collapse
Affiliation(s)
- Z Sheng Guo
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
9
|
Stanford MM, McFadden G. Myxoma virus and oncolytic virotherapy: a new biologic weapon in the war against cancer. Expert Opin Biol Ther 2007; 7:1415-25. [PMID: 17727330 DOI: 10.1517/14712598.7.9.1415] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oncolytic virotherapy is an innovative alternative to more conventional cancer therapies. The ability of some viruses to specifically target and kill malignant cancerous cells while leaving normal tissue unscathed has opened a large repertoire of new and selective cancer killing therapeutic candidates. Poxviruses, such as vaccinia virus, have a long history of use in humans as live vaccines and have more recently been studied as potential platforms for delivery of immunotherapeutics and attenuated variants of vaccinia have been explored as oncolytic candidates. In contrast, the poxvirus myxoma virus is a novel oncolytic candidate that has no history of use in humans directly, as it has a distinct and absolute host species tropism to lagomorphs (rabbits). Myxoma virus has been recently shown to be able to also selectively infect and kill human tumor cells, a unique tropism that is linked to dysregulated intracellular signalling pathways found in the majority of human cancers. This review outlines the existing knowledge on the tropism of myxoma virus for human cancer cells, as well as preclinical data exhibiting its ability to infect and clear tumors in animal models of cancer. This is an exciting new therapeutic option for treating cancer, and myxoma virus joins a growing group of oncolytic virus candidates that are being developed as a new class of cancer therapies in man.
Collapse
Affiliation(s)
- Marianne M Stanford
- University of Western Ontario, Biotherapeutics Research Group, Robarts Research Institute, Department of Microbiology and Immunology, London, Ontario, N6G 2V4, Canada
| | | |
Collapse
|