1
|
Kanazawa T, Misawa K, Misawa Y, Uehara T, Fukushima H, Kusaka G, Maruta M, Carey TE. G-Protein-Coupled Receptors: Next Generation Therapeutic Targets in Head and Neck Cancer? Toxins (Basel) 2015; 7:2959-84. [PMID: 26251921 PMCID: PMC4549734 DOI: 10.3390/toxins7082959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/22/2015] [Accepted: 07/20/2015] [Indexed: 01/28/2023] Open
Abstract
Therapeutic outcome in head and neck squamous cell carcinoma (HNSCC) is poor in most advanced cases. To improve therapeutic efficiency, novel therapeutic targets and prognostic factors must be discovered. Our studies have identified several G protein-coupled receptors (GPCRs) as promising candidates. Significant epigenetic silencing of GPCR expression occurs in HNSCC compared with normal tissue, and is significantly correlated with clinical behavior. Together with the finding that GPCR activity can suppress tumor cell growth, this indicates that GPCR expression has potential utility as a prognostic factor. In this review, we discuss the roles that galanin receptor type 1 (GALR1) and type 2 (GALR2), tachykinin receptor type 1 (TACR1), and somatostatin receptor type 1 (SST1) play in HNSCC. GALR1 inhibits proliferation of HNSCC cells though ERK1/2-mediated effects on cell cycle control proteins such as p27, p57, and cyclin D1, whereas GALR2 inhibits cell proliferation and induces apoptosis in HNSCC cells. Hypermethylation of GALR1, GALR2, TACR1, and SST1 is associated with significantly reduced disease-free survival and a higher recurrence rate. Although their overall activities varies, each of these GPCRs has value as both a prognostic factor and a therapeutic target. These data indicate that further study of GPCRs is a promising strategy that will enrich pharmacogenomics and prognostic research in HNSCC.
Collapse
Affiliation(s)
- Takeharu Kanazawa
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Shimotsuke 329-0498, Japan.
- Laboratory of Head and Neck Center Biology, Department of Otolaryngology, Head and Neck Surgery, the University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kiyoshi Misawa
- Laboratory of Head and Neck Center Biology, Department of Otolaryngology, Head and Neck Surgery, the University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-319, Japan.
| | - Yuki Misawa
- Laboratory of Head and Neck Center Biology, Department of Otolaryngology, Head and Neck Surgery, the University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-319, Japan.
| | - Takayuki Uehara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan.
| | - Hirofumi Fukushima
- Department of Head and Neck, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Gen Kusaka
- Department of Neurosurgery, Jichi Medical University Saitama Medical Center, Saitama 330-8503, Japan.
| | - Mikiko Maruta
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Shimotsuke 329-0498, Japan.
| | - Thomas E Carey
- Laboratory of Head and Neck Center Biology, Department of Otolaryngology, Head and Neck Surgery, the University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Gaballah K, Costea DE, Hills A, Gollin SM, Harrison P, Partridge M. Tissue engineering of oral dysplasia. J Pathol 2008; 215:280-9. [DOI: 10.1002/path.2360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Sokolov K, Nida D, Descour M, Lacy A, Levy M, Hall B, Dharmawardhane S, Ellington A, Korgel B, Richards-Kortum R. Molecular optical imaging of therapeutic targets of cancer. Adv Cancer Res 2007; 96:299-344. [PMID: 17161684 DOI: 10.1016/s0065-230x(06)96011-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent progress in discerning the molecular events that accompany carcinogenesis has led to development of new cancer therapies directly targeted against the molecular changes of neoplasia. Molecular-targeted therapeutics have shown significant improvements in response rates and decreased toxicity as compared to conventional cytotoxic therapies which lack specificity for tumor cells. In order to fully explore the potential of molecular-targeted therapy, a new set of tools is required to dynamically and quantitatively image and monitor the heterogeneous molecular profiles of tumors in vivo. Currently, molecular markers can only be visualized in vitro using complex immunohistochemical staining protocols. In this chapter, we discuss emerging optical tools to image in vivo a molecular profile of risk-based hallmarks of cancer for selecting and monitoring therapy. We present the combination of optically active, targeted nanoparticles for molecular imaging with advances in minimally invasive optical imaging systems, which can be used to dynamically image both a molecular and phenotypic profile of risk and to monitor changes in this profile during therapy.
Collapse
Affiliation(s)
- Konstantin Sokolov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|