1
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
2
|
Adipose tissue-derived neurotrophic factor 3 regulates sympathetic innervation and thermogenesis in adipose tissue. Nat Commun 2021; 12:5362. [PMID: 34508100 PMCID: PMC8433218 DOI: 10.1038/s41467-021-25766-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Activation of brown fat thermogenesis increases energy expenditure and alleviates obesity. Sympathetic nervous system (SNS) is important in brown/beige adipocyte thermogenesis. Here we discover a fat-derived "adipokine" neurotrophic factor neurotrophin 3 (NT-3) and its receptor Tropomyosin receptor kinase C (TRKC) as key regulators of SNS growth and innervation in adipose tissue. NT-3 is highly expressed in brown/beige adipocytes, and potently stimulates sympathetic neuron neurite growth. NT-3/TRKC regulates a plethora of pathways in neuronal axonal growth and elongation. Adipose tissue sympathetic innervation is significantly increased in mice with adipocyte-specific NT-3 overexpression, but profoundly reduced in mice with TRKC haploinsufficiency (TRKC +/-). Increasing NT-3 via pharmacological or genetic approach promotes beige adipocyte development, enhances cold-induced thermogenesis and protects against diet-induced obesity (DIO); whereas TRKC + /- or SNS TRKC deficient mice are cold intolerant and prone to DIO. Thus, NT-3 is a fat-derived neurotrophic factor that regulates SNS innervation, energy metabolism and obesity.
Collapse
|
3
|
Ménard M, Costechareyre C, Ichim G, Blachier J, Neves D, Jarrosson-Wuilleme L, Depping R, Koster J, Saintigny P, Mehlen P, Tauszig-Delamasure S. Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth. PLoS Biol 2018; 16:e2002912. [PMID: 29750782 PMCID: PMC5965893 DOI: 10.1371/journal.pbio.2002912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/23/2018] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
The neurotrophin-3 (NT-3) receptor tropomyosin receptor kinase C (TrkC/NTRK3) has been described as a dependence receptor and, as such, triggers apoptosis in the absence of its ligand NT-3. This proapoptotic activity has been proposed to confer a tumor suppressor activity to this classic tyrosine kinase receptor (RTK). By investigating interacting partners that might facilitate TrkC-induced cell death, we have identified the basic helix-loop-helix (bHLH) transcription factor Hey1 and importin-α3 (karyopherin alpha 4 [KPNA4]) as direct interactors of TrkC intracellular domain, and we show that Hey1 is required for TrkC-induced apoptosis. We propose here that the cleaved proapoptotic portion of TrkC intracellular domain (called TrkC killer-fragment [TrkC-KF]) is translocated to the nucleus by importins and interacts there with Hey1. We also demonstrate that Hey1 and TrkC-KF transcriptionally silence mouse double minute 2 homolog (MDM2), thus contributing to p53 stabilization. p53 transcriptionally regulates the expression of TrkC-KF cytoplasmic and mitochondrial interactors cofactor of breast cancer 1 (COBRA1) and B cell lymphoma 2–associated X (BAX), which will subsequently trigger the intrinsic pathway of apoptosis. Of interest, TrkC was proposed to constrain tumor progression in neuroblastoma (NB), and we demonstrate in an avian model that TrkC tumor suppressor activity requires Hey1 and p53. Tropomyosin receptor kinase C (TrkC) is a transmembrane receptor at the cell surface and has been described to work paradoxically both as an oncogene and as a tumor suppressor. We partly solved this paradox in a previous study, demonstrating that TrkC is a double-facet receptor: Upon interaction with its ligand neurotrophin-3 (NT-3), TrkC has a tyrosine kinase activity and induces survival and proliferation of the cell; conversely, in the absence of the ligand, TrkC is cleaved and releases a "killer-fragment" that triggers apoptosis. In this study, we analyze the fate of this fragment and show that TrkC killer-fragment is translocated to the nucleus, where it stabilizes the apoptosis inducer p53. We further find that p53 activates the transcription of cytoplasmic molecular partners, which interact with TrkC killer-fragment and induce apoptosis. We also demonstrate that alteration of this mechanism favors tumor growth in neuroblastoma (NB), an avian tumor progression model for a pediatric cancer.
Collapse
Affiliation(s)
- Marie Ménard
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Clélia Costechareyre
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Gabriel Ichim
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Jonathan Blachier
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Neves
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Loraine Jarrosson-Wuilleme
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Reinhard Depping
- Universität zu Lübeck, Institut für Physiologie, Zentrum für Medizinische Struktur und Zellbiologie, Lübeck, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Pierre Saintigny
- Department of translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
- Department of translational Research and Innovation, Centre Léon Bérard, Lyon, France
- * E-mail: (PM); (ST)
| | - Servane Tauszig-Delamasure
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
- * E-mail: (PM); (ST)
| |
Collapse
|
4
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
5
|
Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Gran B, Curtis M, Rostami A, Zhang GX. RETRACTED: Neural Stem Cells Engineered to Express Three Therapeutic Factors Mediate Recovery from Chronic Stage CNS Autoimmunity. Mol Ther 2016; 24:1456-1469. [PMID: 27203442 PMCID: PMC5023377 DOI: 10.1038/mt.2016.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the editor-in-chief. Similarities were found between images in this article and a previously published article in Scientific Reports (Zhang et al., 2015, Sci. Rep. 30, 17407, https://doi.org/10.1038/srep17407). Similarities were also found between images within this article. These concerns were initially reported in a PubPeer thread (https://pubpeer.com/publications/11D757FEEACDC81ACAF60BD0A32607). Image analysis performed by the editorial office confirmed findings of image reuse in Figures 2C and 5C of the Molecular Therapy article. In addition, some of the original data provided by the authors do not match the published article. This reuse (and in part misrepresentation) of data without appropriate attribution represents a severe abuse of the scientific publishing system. The authors disagree with this retraction and maintain that these mistakes do not alter the conclusions of the study.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Cell Differentiation
- Cell Engineering
- Cell Proliferation
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Gene Expression
- Genetic Vectors/genetics
- Interleukin-10/genetics
- Lentivirus/genetics
- Macrophages/metabolism
- Mice
- Microglia/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Myelin Basic Protein/biosynthesis
- Myelin Proteins/metabolism
- Nerve Growth Factors/genetics
- Neural Stem Cells/cytology
- Neural Stem Cells/metabolism
- Neurons/metabolism
- Neurons/pathology
- Oligodendroglia/cytology
- Oligodendroglia/metabolism
- Stem Cell Transplantation
- Transduction, Genetic
- Transgenes
Collapse
Affiliation(s)
- Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaping Yan
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Shanxi Datong University Medical School, Datong, China
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK
| | - Mark Curtis
- Department of Neuropathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Increased circulating levels of neurotrophins and elevated expression of their high-affinity receptors on skin and gut mast cells in mastocytosis. Blood 2013; 122:1779-88. [DOI: 10.1182/blood-2012-12-469882] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Key Points
Patients with mastocytosis feature increased NT serum levels and elevated expression of modified NT receptors on skin and gut MCs. NTs might contribute to mastocytosis via increased migration of MC progenitors, MC differentiation, proliferation, and/or survival.
Collapse
|
7
|
Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 2012; 23:357-65. [DOI: 10.1016/j.cytogfr.2012.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 12/21/2022]
|
8
|
Ivanov SV, Panaccione A, Brown B, Guo Y, Moskaluk CA, Wick MJ, Brown JL, Ivanova AV, Issaeva N, El-Naggar AK, Yarbrough WG. TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene 2012; 32:3698-710. [PMID: 23027130 DOI: 10.1038/onc.2012.377] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/05/2012] [Accepted: 07/16/2012] [Indexed: 01/11/2023]
Abstract
Treatment options for adenoid cystic carcinoma (ACC) of the salivary gland, a slowly growing tumor with propensity for neuroinvasion and late recurrence, are limited to surgery and radiotherapy. Based on expression analysis performed on clinical specimens of salivary cancers, we identified in ACC expression of the neurotrophin-3 receptor TrkC/NTRK3, neural crest marker SOX10, and other neurologic genes. Here, we characterize TrkC as a novel ACC marker, which was highly expressed in 17 out of 18 ACC primary-tumor specimens, but not in mucoepidermoid salivary carcinomas or head and neck squamous cell carcinoma. Expression of the TrkC ligand NT-3 and Tyr-phosphorylation of TrkC detected in our study suggested the existence of an autocrine signaling loop in ACC with potential therapeutic significance. NT-3 stimulation of U2OS cells with ectopic TrkC expression triggered TrkC phosphorylation and resulted in Ras, Erk 1/2 and Akt activation, as well as VEGFR1 phosphorylation. Without NT-3, TrkC remained unphosphorylated, stimulated accumulation of phospho-p53 and had opposite effects on p-Akt and p-Erk 1/2. NT-3 promoted motility, migration, invasion, soft-agar colony growth and cytoskeleton restructuring in TrkC-expressing U2OS cells. Immunohistochemical analysis demonstrated that TrkC-positive ACC specimens also show high expression of Bcl2, a Trk target regulated via Erk 1/2, in agreement with activation of the TrkC pathway in real tumors. In normal salivary gland tissue, both TrkC and Bcl2 were expressed in myoepithelial cells, suggesting a principal role for this cell lineage in the ACC origin and progression. Sub-micromolar concentrations of a novel potent Trk inhibitor AZD7451 completely blocked TrkC activation and associated tumorigenic behaviors. Pre-clinical studies on ACC tumors engrafted in mice showed efficacy and low toxicity of AZD7451, validating our in vitro data and stimulating more research into its clinical application. In summary, we describe in ACC a previously unrecognized pro-survival neurotrophin signaling pathway and link it with cancer progression.
Collapse
Affiliation(s)
- S V Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT 06519-1369, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ramekers D, Versnel H, Grolman W, Klis SF. Neurotrophins and their role in the cochlea. Hear Res 2012; 288:19-33. [DOI: 10.1016/j.heares.2012.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/10/2012] [Accepted: 03/05/2012] [Indexed: 12/16/2022]
|
10
|
Tognon CE, Sorensen PHB. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:33-48. [PMID: 22239439 DOI: 10.1517/14728222.2011.638626] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The IGF system controls growth, differentiation, and development at the cellular, organ and organismal levels. IGF1 receptor (IGF1R) signaling is dysregulated in many cancers. Numerous clinical trials are currently assessing therapies that inhibit either growth factor binding or IGF1R itself. Therapeutic benefit, often in the form of stable disease, has been reported for many different cancer types. AREAS COVERED Canonical IGF signaling and non-canonical pathways involved in carcinogenesis. Three recent insights into IGF1R signaling, namely hybrid receptor formation with insulin receptor (INSR), insulin receptor substrate 1 nuclear translocation, and evidence for IGF1R/INSR as dependence receptors. Different approaches to targeting IGF1R and mechanisms of acquired resistance. Possible mechanisms by which IGF1R signaling supports carcinogenesis and specific examples in different human tumors. EXPERT OPINION Pre-clinical data justifies IGF1R as a target and early clinical trials have shown modest efficacy in selected tumor types. Future work will focus upon assessing the usefulness or disadvantages of simultaneously targeting the IGF1R and INSR, biomarker development to identify potentially responsive patients, and the use of IGF1R inhibitors in combination therapies or as an adjunct to conventional chemotherapy.
Collapse
Affiliation(s)
- Cristina E Tognon
- British Columbia Cancer Research Centre , Department of Molecular Oncology, Vancouver, British Columbia, Canada
| | | |
Collapse
|