1
|
Dimitriadis K, Pyrpyris N, Sakalidis A, Dri E, Iliakis P, Tsioufis P, Tatakis F, Beneki E, Fragkoulis C, Aznaouridis K, Tsioufis K. ANOCA updated: From pathophysiology to modern clinical practice. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024:S1553-8389(24)00672-9. [PMID: 39341735 DOI: 10.1016/j.carrev.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Lately, a large number of stable ischemic patients, with no obstructed coronary arteries are being diagnosed. Despite this condition, which is being described as angina with no obstructive coronary arteries (ANOCA), was thought to be benign, recent evidence report that it is associated with increased risk for adverse cardiovascular outcomes. ANOCA is more frequent in women and, pathophysiologically, it is predominantly related with microvascular dysfunction, while other factors, such as endothelial dysfunction, inflammation and autonomic nervous system seem to also play a major role to its development, while other studies implicate ANOCA and microvascular dysfunction in the pathogenesis of heart failure with preserved ejection fraction. For establishing an ANOCA diagnosis, measurement including coronary flow reserve (CFR), microvascular resistance (IMR) and hyperemic microvascular resistance (HMR) are mostly used in clinical practice. In addition, new modalities, such as optical coherence tomography (OCT) are being tested and show promising results for future diagnostic use. Regarding management, pharmacotherapy consists of a wide selection of drugs, according to the respected pathophysiology of the disease (vasospastic angina or microvascular dysfunction), while research for new treatment options including interventional techniques, is currently ongoing. This review, therefore, aims to provide a comprehensive analysis of all aspects related to ANOCA, from pathophysiology to clinical managements, as well as clinical implications and suggestions for future research efforts, which will help advance our understanding of the syndrome and establish more, evidence-based, therapies.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece.
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Athanasios Sakalidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Eirini Dri
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Konstantinos Aznaouridis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
2
|
Celebi Torabfam G, Porsuk MH. The Role of the Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Vascular Diseases: A Therapeutic Approach. Angiology 2024:33197231226275. [PMID: 38171493 DOI: 10.1177/00033197231226275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cardiovascular and bone diseases contribute independently to mortality and global health. The exact mechanisms involved in the pathophysiology shared between bone and vascular diseases are not well defined. Endothelial cells and osteoblasts communicate during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. One shared mechanism may involve osteoprotegerin (OPG) and its ligand Receptor Activator of NF-κB Ligand (RANKL). The RANKL/OPG ratio is an important modulator for the skeletal, immunological, and vascular systems. OPG levels are elevated due to either osteogenic causes or inflammatory responses in the vasculature. The data obtained from clinical and in vitro studies support the role of the RANKL/OPG ratio as a potential marker for the progression of endothelial damage. Therefore, determining the therapeutic approaches for the targeting RANKL/OPG ratio and evaluating its usage as a biomarker in cardiovascular and bone pathophysiology are needed. By integrating the protective and disease-causing role of OPG with its ligand, this review outlines the role of the RANKL/OPG ratio at the molecular level. We also consider targeted therapeutic approaches.
Collapse
Affiliation(s)
- Gizem Celebi Torabfam
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Melis Hazal Porsuk
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| |
Collapse
|
4
|
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 2018; 182:115-132. [DOI: 10.1016/j.pharmthera.2017.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Abstract
Osteoprotegerin (OPG) is a 401 amino acid N-glycosylated protein, which is highly expressed in a large number of tissues. OPG mainly binds to two ligands, i.e. RANKL (receptor activator of nuclear factor κB ligand) and TRAIL (tumor necrosis factor- related apoptosis-inducing ligand). Upon binding to the former ligand, OPG inhibits the activation of osteoclasts and promotes apoptosis of osteoclasts, whereas the binding of OPG with TRAIL prevents apoptosis of tumor cells. There is now emerging evidence that OPG participates in the pathogenesis of atherosclerosis and cardiovascular diseases by amplifying the adverse effects of inflammation and several traditional risk factors such as hyperlipidemia, endothelial dysfunction, diabetes mellitus, and hypertension. Some epidemiological studies also showed a positive association between OPG levels and cardiovascular morbidity and mortality. The aim of this article is to provide an overview of the main biochemical, physiological, and pathological aspects of OPG biology in cardiovascular disease.
Collapse
Affiliation(s)
- Martina Montagnana
- Chemistry and Clinical Microscopy Section, Department of Life and Reproduction Sciences, University Hospital of Verona, Italy.
| | | | | | | |
Collapse
|
6
|
Guzel S, Seven A, Kocaoglu A, Ilk B, Guzel EC, Saracoglu GV, Celebi A. Osteoprotegerin, leptin and IL-6: association with silent myocardial ischemia in type 2 diabetes mellitus. Diab Vasc Dis Res 2013; 10:25-31. [PMID: 22496403 DOI: 10.1177/1479164112440815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diabetic patients often exhibit severe, asymptomatic coronary artery disease (CAD). The relationship between osteoprotegerin (OPG), inflammatory markers and silent myocardial ischemia remains to be elucidated. METHODS We recruited 45 type 2 diabetic patients and 33 healthy controls and assessed them for silent myocardial ischemia (SMI) by myocardial perfusion imaging. Patient blood was tested for OPG, IL-6 and leptin concentrations. RESULTS OPG, leptin and IL-6 levels were found significantly elevated in diabetic patients (p < 0.001, p < 0.01, p < 0.05). Based on our classification of presence/absence of SMI in our diabetic group, we found that there was a significant association between SMI and the biomarkers IL-6 (p < 0.001), leptin (p < 0.001) and OPG (p < 0.05). In multivariate regression analyses, OPG was found to be significantly related to diabetes mellitus and to SMI. Age, sex and smoking increased the association between OPG and SMI. CONCLUSION High OPG, leptin and IL-6 levels are associated with the presence and severity of SMI in type 2 diabetic patients.
Collapse
Affiliation(s)
- Savas Guzel
- Department of Biochemistry, Namik Kemal University, 100.YilMah. Barbaros Cad, no. 132, Tekirdag, Turkey.
| | | | | | | | | | | | | |
Collapse
|