1
|
Sahu R, Jha S, Pattanayak SP. Therapeutic silencing of mTOR by systemically administered siRNA-loaded neutral liposomal nanoparticles inhibits DMBA-induced mammary carcinogenesis. Br J Cancer 2022; 127:2207-2219. [PMID: 36261586 PMCID: PMC9726943 DOI: 10.1038/s41416-022-02011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Mammary carcinogenesis possesses great challenges due to the lack of effectiveness of the multiple therapeutic options available. Gene therapy-based cancer treatment strategy provides more targeting accuracy, fewer side effects, and higher therapeutic efficiency. Downregulation of the oncogene mTOR by mTOR-siRNA is an encouraging approach to reduce cancer progression. However, its employment as means of therapeutic strategy has been restricted due to the unavailability of a suitable delivery system. METHODS A suitable nanocarrier system made up of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) has been developed to prevent degradation and for proficient delivery of siRNA. This was followed by in vitro and in vivo anti-breast cancer efficiency analysis of the mTOR siRNA-loaded neutral liposomal formulation (NL-mTOR-siRNA). RESULTS In our experiment, a profound reduction in MCF-7 cell growth, proliferation and invasion was ascertained following extensive downregulation of mTOR expression. NL-mTOR-siRNA suppressed tumour growth and restored morphological alterations of DMBA-induced breast cancer. In addition, neutral liposome enhanced accumulation of siRNA in mammary cancer tissues facilitating its deep cytosolic distribution within the tumour, which allows apoptosis thereby facilitating its anti-tumour potential. CONCLUSION Hence, the current study highlighted the augmented ground for therapies aiming toward cancerous cells to diminish mTOR expression by RNAi in managing mammary carcinoma.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835 215, India
| | - Shivesh Jha
- Division of Pharmacognosy and Phytochemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835 215, India
| | - Shakti Prasad Pattanayak
- Department of Pharmacy, School of Health Science, Central University of South Bihar (Gaya), Gaya, Bihar, 824 236, India.
| |
Collapse
|
2
|
Emdal KB, Palacio-Escat N, Wigerup C, Eguchi A, Nilsson H, Bekker-Jensen DB, Rönnstrand L, Kazi JU, Puissant A, Itzykson R, Saez-Rodriguez J, Masson K, Blume-Jensen P, Olsen JV. Phosphoproteomics of primary AML patient samples reveals rationale for AKT combination therapy and p53 context to overcome selinexor resistance. Cell Rep 2022; 40:111177. [PMID: 35947955 PMCID: PMC9380259 DOI: 10.1016/j.celrep.2022.111177] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations. Phosphoproteomics with functional scoring uncovers context for selinexor sensitivity Functional p53 correlates with selinexor sensitivity, which is enhanced by nutlin-3a Dysregulated AKT-FOXO3 drives selinexor resistance, which is overcome with MK-2206 Spatial proteomics reveals selinexor-induced nucleocytoplasmic protein shuttling
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolàs Palacio-Escat
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant-Zentrum, Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Heidelberg, Germany; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen, Germany
| | | | - Akihiro Eguchi
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant-Zentrum, Heidelberg, Germany; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen, Germany.
| | | | | | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
4
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
5
|
Deng BB, Jiao BP, Liu YJ, Li YR, Wang GJ. BIX-01294 enhanced chemotherapy effect in gastric cancer by inducing GSDME-mediated pyroptosis. Cell Biol Int 2020; 44:1890-1899. [PMID: 32437063 PMCID: PMC7496303 DOI: 10.1002/cbin.11395] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Adjuvant chemotherapy in combination with surgery is expected to be a curative strategy for gastric cancer. However, drug resistance remains an obstacle in effective chemotherapy. Therefore, understanding the potential mechanisms of chemotherapy induced gastric cancer cell death is of great importance. We demonstrated that BIX-01294 (BIX) at low concentration could induce autophagic flux by converting LC3B-I to LC3B-II and directly activate autophagy associated cell death in gastric cancer cell lines at high concentration. BIX at low concentration could help obtain sensitivity of gastric cancer cells to chemotherapy with significantly reduced cell viability. Interestingly, BIX combined Cis (BIX + Cis) treated SGC-7901 cells display pyroptosis related cell death with large bubbles blown around the membrane, significantly decreased cell viability, elevated lactate dehydrogenase release and increased percentage of propidium iodide and Annexin-V double positive cells. Furthermore, the cleavage of gasdermin E (GSDME) and caspase-3 but not GSDMD was detected by immunoblotting and the knockout of GSDME switched pyroptosis into apoptosis in the BIX + Cis combined treated group. Furthermore, the deficiency of Beclin-1 to inhibit BIX induced autophagic flux completely blocked BIX + Cis combined treated induced cell pyroptosis related cell death. Additionally, BIX + Cis in vivo treatment could inhibit tumor growth, which could be reversed by the deficiency of Beclin-1 and be delayed by the deficiency of GSDME. In conclusion, our data was the first to reveal that BIX enhanced the anticancer chemotherapy effect by induced GSDME-mediated pyroptosis through the activation of autophagic flux in gastric cancer cells.
Collapse
Affiliation(s)
- Bei-Bei Deng
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bao-Ping Jiao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yang-Jun Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yan-Rong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gui-Jun Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
6
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
7
|
Zhang R, Tang P, Wang F, Xing Y, Jiang Z, Chen S, Meng X, Liu L, Cao W, Zhao H, Ma P, Chen Y, An C, Sun L. Tumor suppressor miR‐139‐5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway. J Cell Biochem 2018; 120:4423-4432. [PMID: 30367526 DOI: 10.1002/jcb.27728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ronghui Zhang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ping Tang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Fang Wang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ying Xing
- Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Zhongxing Jiang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Shaoqian Chen
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Xiaoli Meng
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Linxiang Liu
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Weijie Cao
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Huayan Zhao
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ping Ma
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yanli Chen
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Chao An
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ling Sun
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
8
|
Henfling M, Perren A, Schmitt AM, Saddig CM, Starke AA, Riedl RG, Versleijen-Jonkers YMH, Sprij-Mooij DM, Ramaekers FCS, Hofland L, Speel EJM. The IGF pathway is activated in insulinomas but downregulated in metastatic disease. Endocr Relat Cancer 2018; 25:ERC-18-0222. [PMID: 30021864 DOI: 10.1530/erc-18-0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/03/2023]
Abstract
Clinical and molecular studies have implicated epidermal growth factor receptor (EGFR), insulin-like growth factor (IGF) and target of rapamycin (mTOR) signaling pathways in the regulation of pancreatic neuroendocrine tumor (PanNET) growth. Interpretation and comparison of these studies is complex due to clinical and molecular tumor heterogeneity. We therefore focused in this study on insulinomas, which we examined for mRNA and protein expression of EGFR, IGF and mTOR signaling pathway components by quantitative real-time PCR (n=48) and immunohistochemistry (n=86). Findings were compared with normal pancreatic islets and correlated with histopathological data and clinical outcome. Insulinomas showed low EGFR and high IGF2 expression. IGFBP2, IGFBP3 and IGFBP6 mRNA levels were 2-4 folds higher than in islets. High protein expression of IGF2, IGF1R and INSR (in 51-92% of the tumors) and low to moderate expression of mTORC1 pathway proteins p-PS6k and p-4EBP1 (7-28% of the tumors) were observed. Correlations were found between 1) ERK1 mRNA expression and that of numerous IGF pathway genes, 2) p-ERK and IGF1R protein expression and 3) decrease of IGF pathway components and both metastatic disease and shorter 10 years disease free survival. In conclusion, our observations suggest that high expression of IGF signaling pathway components is a hallmark of insulinomas, but does not necessarily lead to increased mTOR signaling. Reduced expression of IGF pathway components may be an adverse prognostic factor in insulinomas.
Collapse
Affiliation(s)
- Mieke Henfling
- M Henfling, Genetics & Cell Biology, Maastricht University - Location Randwyck, Maastricht, Netherlands
| | - Aurel Perren
- A Perren, University of Bern, Institute of Pathology, Bern, Switzerland
| | - Anja Maria Schmitt
- A Schmitt, Department of Pathology, University of Bern, Bern, Switzerland
| | - Christiane M Saddig
- C Saddig, Insulinoma and GEP-Tumor Center Neuss-Düsseldorf, Klinik für Endokrine Chirurgie, Stadtische Kliniken Neuss Lukaskrankenhaus GmbH, Neuss, Germany
| | - Achim A Starke
- A Starke, Insulinoma and GEP-Tumor Center Neuss-Düsseldorf, Klinik für Endokrine Chirurgie, Stadtische Kliniken Neuss Lukaskrankenhaus GmbH, Neuss, Germany
| | - Robert G Riedl
- R Riedl, Pathology, Zuyderland Medisch Centrum Heerlen, Heerlen, Netherlands
| | | | - Diane M Sprij-Mooij
- D Sprij-Mooij, Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Frans C S Ramaekers
- F Ramaekers, Molecular Cell Biology, Maastricht University, Maastricht, Netherlands
| | - Leo Hofland
- L Hofland, Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Ernst-Jan M Speel
- E Speel, Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
9
|
Stevens JW, Meyerholz DK, Neighbors JD, Morcuende JA. 5'-methylschweinfurthin G reduces chondrosarcoma tumor growth . J Orthop Res 2018; 36:1283-1293. [PMID: 28960476 DOI: 10.1002/jor.23753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023]
Abstract
New treatment options are urgently required in the field of chondrosarcoma, particularly of chondrosarcomas with a well-differentiated hyaline cartilage-like extracellular matrix (e.g., collagen II and proteoglycan-rich) phenotype, notoriously resistant to drug penetration, and having potential of progression towards higher grade. We investigated the feasibility of using 5'-methylschweinfurthin G (MeSG) as a tumor suppressor agent in the Swarm rat chondrosarcoma, an intermediate- to high-grade chondrosarcoma model, having a hyaline cartilage-like phenotype. Tumor cell culture studies were performed to identify their proliferative and cytotoxicity sensitivity to MeSG. Tumor burden mice were treated with MeSG and analyzed for tumor growth, morphology and regression. The chondrosarcoma tumor cells had a half maximum cytotoxicity concentration (IC50 ) of 35 nM MeSG; approximately 300-fold less than freshly isolated rat chondrocytes (IC50 of 11 µM). Multiple injections of MeSG (20 mg/kg, body weight) resulted in reduced/eliminated tumor growth over a 17-day period in mice, and an 83% reduction (p = 0.023) in tumor mass. Three out of ten MeSG treated mice had complete elimination of tumor. Tumors of treated mice had a decrease in chondrosarcoma cell proliferation (p = 0.012) and an increase in cell death (p = 0.030) compared with tumors of control mice. These findings in an animal model demonstrate the effectiveness of MeSG for treatment of rat chondrosarcomas, and may have the potential use as a therapeutic option for the difficult-to-treat intermediate-to high-grade hyaline cartilage-like chondrosarcoma. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1283-1293, 2018.
Collapse
Affiliation(s)
- Jeff W Stevens
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, 500 Newton Road, 3160 ML, Iowa City, 52242, Iowa
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, The University of Iowa, 500 Newton Road, 1165 ML, Iowa City, 52242, Iowa
| | - Jeffery D Neighbors
- Departments of Pharmacology and Medicine, Pennsylvania State College of Medicine, Pennsylvania State Cancer Institute, 500 University Drive, CH72, Hershey, 17033, Pennsylvania
| | - José A Morcuende
- Department of Orthopaedic Surgery, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, 01023 JPP, Iowa City, 52242, Iowa
| |
Collapse
|
10
|
Herschbein L, Liesveld JL. Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML. Blood Rev 2017; 32:235-248. [PMID: 29276026 DOI: 10.1016/j.blre.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023]
Abstract
The phosphatidylinositol 3-kinase/protein kinase B (Akt)/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathway is amplified in 60-80% of patients with acute myelogenous leukemia (AML). Since this complex pathway is crucial to cell functions such as growth, proliferation, and survival, inhibition of this pathway would be postulated to inhibit leukemia initiation and propagation. Inhibition of the mTORC1 pathway has met with limited success in AML due to multiple resistance mechanisms including direct insensitivity of the mTORC1 complex, feedback activation of the PI3k/Akt signaling network, insulin growth factor-1 (IGF-1) activation of PI3K, and others. This review explores the role of mTOR inhibition in AML, mechanisms of resistance, and means to improve outcomes through use of dual mTORC1/2 inhibitors or dual TORC/PI3K inhibitors. How these inhibitors interface with currently available therapies in AML will require additional preclinical experiments and conduct of well-designed clinical trials.
Collapse
Affiliation(s)
- Lauren Herschbein
- Department of Medicine, The James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA.
| | - Jane L Liesveld
- Department of Medicine, The James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
Dinner S, Platanias LC. Targeting the mTOR Pathway in Leukemia. J Cell Biochem 2016; 117:1745-52. [PMID: 27018341 DOI: 10.1002/jcb.25559] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
Optimal function of multiple intracellular signaling pathways is essential for normal regulation of cellular transcription, translation, growth, proliferation, and survival. Dysregulation or aberrant activation of such cascades can lead to inappropriate cell survival and abnormal cell proliferation in leukemia. Successful treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors targeting the BCR-ABL fusion gene is a prime example of effectively inhibiting intracellular signaling cascades. However, even in these patients resistance can develop via emergence of mutations or feedback activation of other pathways that cause refractory disease. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway has been observed in different types of leukemia, including CML, acute myeloid leukemia, and acute lymphoblastic leukemia. Abnormal mTOR activity may contribute to chemotherapy resistance, while it may also be effectively targeted via molecular means and/or development of specific pharmacological inhibitors. This review discusses the role of PI3K/Akt/mTOR dysre-gulation in leukemia and summarizes the emergence of preliminary data for the development of novel therapeutic approaches. J. Cell. Biochem. 117: 1745-1752, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shira Dinner
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Leonidas C Platanias
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612
| |
Collapse
|
12
|
Liu NB, Zhang JH, Liu YF, Li J, Zhang ZZ, Li JW, Liu WY, Huang C, Shen T, Gu CW, Gao DY, Wu X, Wu X. High DEPTOR expression correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Onco Targets Ther 2015; 8:3449-55. [PMID: 26640385 PMCID: PMC4657798 DOI: 10.2147/ott.s92862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The disheveled, Egl-10, and pleckstrin (DEP) domain containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) is a binding protein containing mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), and an endogenous mTOR inhibitor. DEPTOR shows abnormal expressions in numerous types of solid tumors. However, how DEP-TOR is expressed in esophageal squamous cell carcinoma (ESCC) remains elusive. METHODS The expression of DEPTOR in 220 cases of ESCC and non-cancerous adjacent tissues was detected by immunohistochemistry. DEPTOR levels in ESCC and paired normal tissue were quantified using reverse transcription-polymerase chain reaction and Western blot analysis to verify the immunohistochemical results. The relationship between DEPTOR expression and the clinicopathological features of ESCC was analyzed based on the results of immunohistochemistry. Finally, we analyzed the relationship between DEPTOR expression and the prognosis of patients with ESCC. RESULTS Immunohistochemical staining showed that the expression rate of DEPTOR in ESCC tissues was significantly increased. DEPTOR mRNA and protein expression was significantly higher in ESCC tissues than in normal adjacent esophageal squamous tissues. High DEPTOR expression was significantly correlated with regional lymph node status in the TNM stage of patients with ESCC. Kaplan-Meier survival curves showed that the rate of overall survival was significantly lower in patients with high DEPTOR expression than in those with low DEPTOR expression. Additionally, high DEPTOR expression was an independent prognostic predictor for ESCC patients. CONCLUSION High DEPTOR expression is an independent prognostic biomarker indicating a worse prognosis for patients with ESCC.
Collapse
Affiliation(s)
- Nan-Bo Liu
- Department of Thoracic Surgery, Southern Medical University, Guangzhou, People's Republic of China
| | - Jun-Hua Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu-Fan Liu
- Department of Thoracic Surgery, Southern Medical University, Guangzhou, People's Republic of China
| | - Jun Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen-Zhong Zhang
- Department of Thoracic Surgery, Southern Medical University, Guangzhou, People's Republic of China
| | - Ji-Wei Li
- Department of Thoracic Surgery, Southern Medical University, Guangzhou, People's Republic of China
| | - Wen-Yue Liu
- Department of Thoracic Surgery, Southern Medical University, Guangzhou, People's Republic of China
| | - Chen Huang
- Department of Thoracic Surgery, Southern Medical University, Guangzhou, People's Republic of China ; Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Tao Shen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, People's Republic of China
| | - Cheng-Wei Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Dong-Yun Gao
- Department of Oncology, Dongtai People's Hospital, Dongtai, People's Republic of China
| | - Xia Wu
- Department of Breast Cancer, Affiliated Hospital, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xu Wu
- Department of Thoracic Surgery, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Mohindra NA, Platanias LC. Catalytic mammalian target of rapamycin inhibitors as antineoplastic agents. Leuk Lymphoma 2015; 56:2518-23. [DOI: 10.3109/10428194.2015.1026816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Davis PE, Peters JM, Krueger DA, Sahin M. Tuberous Sclerosis: A New Frontier in Targeted Treatment of Autism. Neurotherapeutics 2015; 12:572-83. [PMID: 25986747 PMCID: PMC4489948 DOI: 10.1007/s13311-015-0359-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder with a high prevalence of autism spectrum disorder (ASD). Tremendous progress in understanding the pathogenesis of TSC has been made in recent years, along with initial trials of medical treatment aimed specifically at the underlying mechanism of the disorder. At the cellular level, loss of TSC1 or TSC2 results in upregulation of the mechanistic target of rapamycin (mTOR) pathway. At the circuitry level, TSC and mTOR play crucial roles in axonal, dendritic, and synaptic development and function. In this review, we discuss the molecular mechanism underlying TSC, and how this disease results in aberrant neural connectivity at multiple levels in the central nervous system, leading to ASD symptoms. We then review recent advances in mechanism-based treatments of TSC, and the promise that these treatments provide for future mechanism-based treatment of ASD. Because of these recent advances, TSC represents an ideal model for how to make progress in understanding and treating the mechanisms that underlie ASD in general.
Collapse
Affiliation(s)
- Peter E. Davis
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
| | - Jurriaan M. Peters
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
| | - Darcy A. Krueger
- />Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Mustafa Sahin
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
- />F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
15
|
Lidao B, Yi W, Ruilian M, Xianhua R, Haijun L, Agula B. Effect of puerarin on human choriocarcinoma cells. Open Med (Wars) 2015; 10:267-277. [PMID: 28352705 PMCID: PMC5152980 DOI: 10.1515/med-2015-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To discuss the effect of puerarin on human choriocarcinoma cells. METHODS Survival rates under puerarin monotherapy, fluorouracil (5-FU) monotherapy and puerarin in combination with 5-FU were detected by MTT assay. Apoptotic morphology was observed with Hoechst 33258 staining. Apoptosis rates were detected with flow cytometry. Expressions of AKT, mechanistic target of rapamycin (mTOR), and P70S6K mRNAs and phosphorylated proteins were detected by RT-PCR and Western blot. Tumor-bearing mice were administered puerarin and puerarin+5-FU, and serum levels of β-human chorionic gonadotropin (β-HCG) were measured. RESULTS Proliferation inhibition and apoptosis rates of JEG-3 cells were positively correlated with puerarin concentration, which increased in the puerarin+5-FU group. Expression levels of AKT, mTOR, P70S6K mRNAs, and phosphorylated proteins decreased significantly after action of puerarin at different concentrations. With increasing puerarin concentration, expression of cleaved-caspase-3 in JEG-3 cells increased, whereas that of Bcl-2 decreased. Puerarin significantly inhibited tumor growth in choriocarcinoma-bearing SCID mice. Serum β-HCG levels were significantly lower than those of control group after administration. Magnitude of β-HCG decline was positively correlated with concentration.. CONCLUSION Puerarin+5-FU inhibited proliferation of JEG-3 choriocarcinoma cells and promoted their apoptosis, being associated with the mTOR signaling pathway.
Collapse
Affiliation(s)
- Bao Lidao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Wang Yi
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Ma Ruilian
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Ren Xianhua
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Lv Haijun
- Department of Scientific Research, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - B Agula
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot 010059, PR China
| |
Collapse
|
16
|
Carneiro BA, Kaplan JB, Altman JK, Giles FJ, Platanias LC. Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biol Ther 2015; 16:648-56. [PMID: 25801978 PMCID: PMC4622839 DOI: 10.1080/15384047.2015.1026510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/29/2022] Open
Abstract
An accumulating understanding of the complex pathogenesis of acute myeloid leukemia (AML) continues to lead to promising therapeutic approaches. Among the key aberrant intracellular signaling pathways involved in AML, the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) axis is of major interest. This axis modulates a wide array of critical cellular functions, including proliferation, metabolism, and survival. Pharmacologic inhibitors of components of this pathway have been developed over the past decade, but none has an established role in the treatment of AML. This review will discuss the preclinical data and clinical results driving ongoing attempts to exploit the PI3K/AKT/mTOR pathway in patients with AML and address issues related to negative feedback loops that account for leukemic cell survival. Targeting the PI3K/AKT/mTOR pathway is of high interest for the treatment of AML, but combination therapies with other targeted agents may be needed to block negative feedback loops in leukemia cells.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jason B Kaplan
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Francis J Giles
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
- Division of Hematology-Oncology; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL, USA
| |
Collapse
|
17
|
mTOR Signaling in Protein Translation Regulation: Implications in Cancer Genesis and Therapeutic Interventions. Mol Biol Int 2014; 2014:686984. [PMID: 25505994 PMCID: PMC4258317 DOI: 10.1155/2014/686984] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022] Open
Abstract
mTOR is a central nutrient sensor that signals a cell to grow and proliferate. Through distinct protein complexes it regulates different levels of available cellular energy substrates required for cell growth. One of the important functions of the complex is to maintain available amino acid pool by regulating protein translation. Dysregulation of mTOR pathway leads to aberrant protein translation which manifests into various pathological states. Our review focuses on the role mTOR signaling plays in protein translation and its physiological role. It also throws some light on available data that show translation dysregulation as a cause of pathological complexities like cancer and the available drugs that target the pathway for cancer treatment.
Collapse
|
18
|
Saleiro D, Platanias LC. Intersection of mTOR and STAT signaling in immunity. Trends Immunol 2014; 36:21-9. [PMID: 25592035 DOI: 10.1016/j.it.2014.10.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/10/2014] [Accepted: 10/24/2014] [Indexed: 12/17/2022]
Abstract
Optimal regulation of immune networks is essential for the generation of effective immune responses, and defects in such networks can lead to immunodeficiency while uncontrolled responses can result in autoimmune disorders. mTOR and STAT signaling cascades are key regulators of the differentiation and function of cells of the immune system. Both pathways act as sensors and transducers of environmental stimuli, and recent evidence has revealed points of crosstalk between these pathways, highlighting synergistic regulation of immune cell differentiation and function. We review here the current understanding of mTOR and STAT interactions in T cells and innate immune cells, and discuss potential mechanisms underlying these events. We further outline models for the intersection of these pathways in the regulation of immunity and highlight important areas for future research.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL, USA; Division of Hematology-Oncology, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
19
|
Afonso J, Longatto-Filho A, DA Silva VM, Amaro T, Santos LL. Phospho-mTOR in non-tumour and tumour bladder urothelium: Pattern of expression and impact on urothelial bladder cancer patients. Oncol Lett 2014; 8:1447-1454. [PMID: 25202348 PMCID: PMC4156165 DOI: 10.3892/ol.2014.2392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 06/24/2014] [Indexed: 12/28/2022] Open
Abstract
Urothelial bladder carcinoma (UBC) is heterogeneous in its pathology and clinical behaviour. Evaluation of prognostic and predictive biomarkers is necessary, in order to produce personalised treatment options. The present study used immunohistochemistry to evaluate UBC sections containing tumour and non-tumour areas from 76 patients, for the detection of p-mTOR, CD31 and D2-40 (blood and lymphatic vessels identification, respectively). Of the non-tumour and tumour sections, 36 and 20% were scored positive for p-mTOR expression, respectively. Immunoexpression was observed in umbrella cells from non-tumour urothelium, in all cell layers from non-muscle-invasive (NMI) tumours (including expression in superficial cells), and in spots of cells from muscle-invasive (MI) tumours. Positive expression decreased from non-tumour to tumour urothelium, and from pT1/pTis to pT3/pT4 tumours; however, the few pT3/pT4 positive cases had worse survival rates, with 5-year disease-free survival being significantly lower. Angiogenesis occurrence was impaired in pT3/pT4 tumours that did not express p-mTOR. In conclusion, p-mTOR expression in non-tumour umbrella cells is likely a reflection of their metabolic plasticity, and extension to the inner layers of the urothelium in NMI tumours is consistent with an enhanced malignant potential. The expression in cell spots in a few MI tumours and absence of expression in the remaining tumours is intriguing and requires further research. Additional studies regarding the up- and downstream effectors of the mTOR pathway should be conducted.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Healh Sciences (ECS) University of Minho, Braga 4710-057, Portugal ; ICVS/3B's, PT Government Associate Laboratory, Braga 4710-057/Guimarães 4806-909, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Healh Sciences (ECS) University of Minho, Braga 4710-057, Portugal ; ICVS/3B's, PT Government Associate Laboratory, Braga 4710-057/Guimarães 4806-909, Portugal ; Laboratory of Medical Investigation (LIM 14), Faculty of Medicine, São Paulo State University, São Paulo 01246-000, Brazil ; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | - Teresina Amaro
- Experimental Pathology and Therapeutics Research Center, Portuguese Institute of Oncology (IPO), Porto 4200-072, Portugal
| | - Lúcio L Santos
- Department of Surgical Oncology, Portuguese Institute of Oncology (IPO), Porto 4200-072, Portugal ; Faculty of Health Sciences, University Fernando Pessoa, Porto 4200-150, Portugal
| |
Collapse
|
20
|
Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D, Cappellini A, Orsini E, McCubrey JA, Martelli AM. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review). Int J Oncol 2014; 45:909-18. [PMID: 24968804 DOI: 10.3892/ijo.2014.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Newman DJ, Cragg GM. Natural Products as Drugs and Leads to Drugs: An Introduction and Perspective as of the End of 2012. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Advani AS, Mahfouz RZ, Maciejewski J, Rybicki L, Sekeres M, Tripp B, Kalaycio M, Bates J, Saunthararajah Y. Ribosomal S6 Kinase and AKT Phosphorylation as Pharmacodynamic Biomarkers in Patients With Myelodysplastic Syndrome Treated With RAD001. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:172-177.e1. [DOI: 10.1016/j.clml.2013.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/07/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
|
23
|
Mohindra NA, Giles FJ, Platanias LC. Use of mTOR inhibitors in the treatment of malignancies. Expert Opin Pharmacother 2014; 15:979-90. [PMID: 24666371 DOI: 10.1517/14656566.2014.899582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION mTOR and its effectors are central regulators of cellular metabolism in malignant cells and control mRNA translation that ultimately leads to generation of mitogenic proteins. Efforts to target this pathway have been ongoing for over a decade and have had a substantial impact in the management of certain patients with solid tumors. Although activity of mTOR inhibitors has been established in several trials, inability to predict responses remains a limiting factor for the successful incorporation of these agents in the treatment of a variety of malignancies. AREAS COVERED Recent clinical findings are discussed and studies focused on advanced phase development of mTOR inhibitors are summarized. The emergence of precision medicine approaches and the effects that such approaches may have on prospective selection of patients for treatment with mTOR inhibitors are discussed. Also, potential approaches and future prospects to improve responses to mTOR inhibitors by modulating other parallel mitogenic pathways essential for malignant cell proliferation are discussed. EXPERT OPINION Selective targeting of the mTOR pathway offers significant clinical advantage in subsets of patients with diverse malignancies. Approaches to enhance responses by concomitant targeting of resistance pathways and/or predict responses via identification of molecular markers should substantially impact this area in the near and distant future.
Collapse
|
24
|
Abstract
The central role of phosphoinositide 3-kinase (PI3K) activation in tumour cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mammalian target of rapamycin (mTOR) in cancer. However, emerging clinical data show limited single-agent activity of inhibitors targeting PI3K, AKT or mTOR at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukaemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here, we review key challenges and opportunities for the clinical development of inhibitors targeting the PI3K-AKT-mTOR pathway. Through a greater focus on patient selection, increased understanding of immune modulation and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anticancer agents.
Collapse
|
25
|
PI3K/mTOR pathway inhibitors sensitize chronic myeloid leukemia stem cells to nilotinib and restore the response of progenitors to nilotinib in the presence of stem cell factor. Cell Death Dis 2013; 4:e827. [PMID: 24091670 PMCID: PMC3824646 DOI: 10.1038/cddis.2013.309] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 02/08/2023]
Abstract
Nilotinib is a second-generation tyrosine kinase inhibitor, designed to specifically inhibit break-point cluster region (BCR)-Abelson (ABL) and developed to treat chronic myeloid leukemia (CML) in patients showing a resistance to imatinib. We previously demonstrated that nilotinib-induced apoptosis was reduced by stem cell factor (SCF) addition. Here, the SCF-activated survival pathway was investigated. BCR-ABL expression was accompanied by the activation of the SCF receptor: c-KIT. Nilotinib inhibited this activation that was restored by SCF binding. Parallel variations were observed for mammaliam target of rapamycin (mTOR) kinase and mTOR complex 1 substrate S6K. The inhibition of mTORC1 restored the response of BCR-ABL cell lines to nilotinib in the presence of SCF. PI3K inhibition restored nilotinib-induced apoptosis. On hematopoietic progenitors from CML patient's bone marrows, mTORC1 inhibition also restored nilotinib sensitivity in the presence of SCF, confirming its involvement in SCF-activated survival pathway. However, this pathway seems not to be involved in the nilotinib-induced resistance of the CML stem cell population. Conversely, PI3K inhibition sensitized both CML progenitors and stem cells to nilotinib, suggesting that, downstream PI3K, two different kinase pathways are activated in CML progenitor and stem cell populations.
Collapse
|
26
|
Altman JK, Platanias LC. Acute myeloid leukemia: potential for new therapeutic approaches targeting mRNA translation pathways. Int J Hematol Oncol 2013; 2. [PMID: 24319589 DOI: 10.2217/ijh.13.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite advances in molecular research related to acute myeloid leukemia (AML) and a better understanding of the mechanisms of leukemogenesis and pathophysiology of the disease, the pharmacological agents used in the treatment of AML have remained essentially unchanged for the last three decades. Advances in the clinical management of AML patients have been achieved by defining better molecular prognostic markers, but there remains a need for new targeted drugs that disrupt non-overlapping pathways in leukemia cells. The mTOR cellular cascade is critical for cell metabolism, growth, proliferation and survival. Extensive preclinical work suggests that targeting mTOR may provide a powerful approach to block AML precursor cells, while other findings suggest enhanced antileukemic effects by combining mTOR inhibitors with traditional chemotherapy. Such combinations may increase antileukemic responses further, offering unique ways to overcome leukemic cell resistance and to eliminate primitive leukemic precursors.
Collapse
Affiliation(s)
- Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center & Division of Hematology-Oncology, Lurie 3-107, 303 East Superior Street, Chicago, IL 60611, USA ; Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA ; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
27
|
Nelson V, Altman JK, Platanias LC. Next generation of mammalian target of rapamycin inhibitors for the treatment of cancer. Expert Opin Investig Drugs 2013; 22:715-22. [DOI: 10.1517/13543784.2013.787066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene 2012; 32:3923-32. [PMID: 23246968 DOI: 10.1038/onc.2012.567] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 12/25/2022]
Abstract
The target of rapamycin (TOR) pathway is highly conserved among eukaryotes and has evolved to couple nutrient sensing to cellular growth. TOR is found in two distinct signaling complexes in cells, TOR complex 1 (TORC1) and TOR complex 2 (TORC2). These complexes are differentially regulated and act as effectors for the generation of signals that drive diverse cellular processes such as growth, proliferation, protein synthesis, rearrangement of the cytoskeleton, autophagy, metabolism and survival. Mammalian TOR (mTOR) is very important for development in embryos, while in adult organisms it is linked to aging and lifespan effects. In humans, the mTOR pathway is implicated in the tumorigenesis of multiple cancer types and its deregulation is associated with familial cancer syndromes. Because of its high biological relevance, different therapeutic strategies have been developed to target this signaling cascade, resulting in the emergence of unique pharmacological inhibitors that are either already approved for use in clinical oncology or currently under preclinical or clinical development. Multimodal treatment strategies that simultaneously target multiple nodes of the pathway and/or negative feedback regulatory loops may ultimately provide the best therapeutic advantage in targeting this pathway for the treatment of malignancies.
Collapse
Affiliation(s)
- E M Beauchamp
- Robert H Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
29
|
Bernstein-Molho R, Kollender Y, Issakov J, Bickels J, Dadia S, Flusser G, Meller I, Sagi-Eisenberg R, Merimsky O. Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas. Cancer Chemother Pharmacol 2012; 70:855-60. [DOI: 10.1007/s00280-012-1968-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/28/2012] [Indexed: 12/19/2022]
|
30
|
Hannan KM, Pearson RB. Too much or too little: harnessing senescence to control oncogene-driven cancer. Cell Cycle 2012; 11:3147-8. [PMID: 22894904 PMCID: PMC3466506 DOI: 10.4161/cc.21588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|